Adam M. Krajewski, Allison M. Beese, Wesley F. Reinhart, Zi-Kui Liu
{"title":"Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning","authors":"Adam M. Krajewski, Allison M. Beese, Wesley F. Reinhart, Zi-Kui Liu","doi":"10.1038/s44335-024-00012-2","DOIUrl":null,"url":null,"abstract":"Diverse disciplines across science and engineering deal with problems related to compositions, which exist in non-Euclidean simplex spaces, rendering many standard tools inaccurate or inefficient. This work explores such spaces conceptually in the context of materials discovery, quantifies their computational feasibility, and implements several essential methods specific to simplex spaces through a new high-performance open-source library nimplex. Most significantly, we derive and implement an algorithm for constructing a novel n-dimensional simplex graph data structure, containing all discretized compositions and possible neighbor-to-neighbor transitions. Critically, no distance or neighborhood calculations are performed, instead leveraging pure combinatorics and order in procedurally generated simplex grids, keeping the algorithm $${\\mathcal{O}}(N)$$ , with minimal memory, enabling rapid construction of graphs with billions of transitions in seconds. Additionally, we demonstrate how such graph representations can be combined to homogeneously express complex path-planning problems, while facilitating efficient deployment of existing high-performance gradient descent, graph traversal, and other optimization algorithms.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00012-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00012-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diverse disciplines across science and engineering deal with problems related to compositions, which exist in non-Euclidean simplex spaces, rendering many standard tools inaccurate or inefficient. This work explores such spaces conceptually in the context of materials discovery, quantifies their computational feasibility, and implements several essential methods specific to simplex spaces through a new high-performance open-source library nimplex. Most significantly, we derive and implement an algorithm for constructing a novel n-dimensional simplex graph data structure, containing all discretized compositions and possible neighbor-to-neighbor transitions. Critically, no distance or neighborhood calculations are performed, instead leveraging pure combinatorics and order in procedurally generated simplex grids, keeping the algorithm $${\mathcal{O}}(N)$$ , with minimal memory, enabling rapid construction of graphs with billions of transitions in seconds. Additionally, we demonstrate how such graph representations can be combined to homogeneously express complex path-planning problems, while facilitating efficient deployment of existing high-performance gradient descent, graph traversal, and other optimization algorithms.