Polarization-Enabled Tuning of Anapole Resonances in Vertically Stacked Elliptical Silicon Nanodisks

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mikko Kjellberg, Felix Vennberg, Ajith Padyana Ravishankar, Srinivasan Anand
{"title":"Polarization-Enabled Tuning of Anapole Resonances in Vertically Stacked Elliptical Silicon Nanodisks","authors":"Mikko Kjellberg,&nbsp;Felix Vennberg,&nbsp;Ajith Padyana Ravishankar,&nbsp;Srinivasan Anand","doi":"10.1002/adpr.202400009","DOIUrl":null,"url":null,"abstract":"<p>This work presents the polarization-dependent behavior of the anapole state in stacked amorphous silicon (a-Si) nanodisks with elliptical geometries. Using SiO<sub>2</sub> as a spacer layer between the a-Si disks, the high index contrast between these materials can be used to significantly reduce the fabrication complexity of the system compared to traditional methods that require additional etching of the spacers. A novel way of continuous tuning of the electric dipole anapole excitation within elliptical stacked a-Si nanoresonators is demonstrated. By rotating the incident electric field's polarization angle, the anapole state can be selectively excited at two distinct wavelength positions separated by 80 nm. Experimental results show characteristic dips in the reflectance of the fabricated elliptical a-Si stacks with wavelength positions between 1135 and 1217 nm depending on the polarization angle of the incident field which is corroborated by FDTD simulations. Through simulating the internal electric field in the resonators and using multipole decomposition, it is shown that the reflectance dips are due to anapole excitation in the individual disks. The capability to excite anapoles at two distinct wavelengths in the same structure has promising implications for the development of tunable sensors, frequency converters, and quantum memory applications.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the polarization-dependent behavior of the anapole state in stacked amorphous silicon (a-Si) nanodisks with elliptical geometries. Using SiO2 as a spacer layer between the a-Si disks, the high index contrast between these materials can be used to significantly reduce the fabrication complexity of the system compared to traditional methods that require additional etching of the spacers. A novel way of continuous tuning of the electric dipole anapole excitation within elliptical stacked a-Si nanoresonators is demonstrated. By rotating the incident electric field's polarization angle, the anapole state can be selectively excited at two distinct wavelength positions separated by 80 nm. Experimental results show characteristic dips in the reflectance of the fabricated elliptical a-Si stacks with wavelength positions between 1135 and 1217 nm depending on the polarization angle of the incident field which is corroborated by FDTD simulations. Through simulating the internal electric field in the resonators and using multipole decomposition, it is shown that the reflectance dips are due to anapole excitation in the individual disks. The capability to excite anapoles at two distinct wavelengths in the same structure has promising implications for the development of tunable sensors, frequency converters, and quantum memory applications.

Abstract Image

垂直堆叠椭圆形硅纳米盘中的极化调谐阿纳波尔共振
这项研究介绍了具有椭圆形几何形状的叠层非晶硅(a-Si)纳米盘中无极态的偏振依赖行为。与需要额外蚀刻间隔层的传统方法相比,利用二氧化硅作为非晶硅盘之间的间隔层,可以利用这些材料之间的高指数对比来显著降低系统的制造复杂性。我们展示了一种在椭圆形堆叠非晶硅纳米声纳器中连续调节电偶极子无偶极子激发的新方法。通过旋转入射电场的极化角,可以在两个不同的波长位置选择性地激发无偶极态,这两个波长位置相距 80 纳米。实验结果表明,根据入射电场的极化角,在波长位置介于 1135 纳米和 1217 纳米之间的椭圆形非晶硅叠层的反射率会出现特征性骤降,这也得到了 FDTD 仿真的证实。通过模拟谐振器中的内部电场并使用多极分解,可以看出反射率骤降是由于单个磁盘中的无极点激发造成的。在同一结构中激发两个不同波长的无偶极的能力对开发可调传感器、频率转换器和量子存储器应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信