Mahmoud M. Awd Allah, Mohamed A. Abbas, Ali Saeed Almuflih, Samy F. Mahmoud, Marwa A. Abd El-baky
{"title":"On the Influence of Different Infill Pattern Structures on the Crashworthiness Performance of 3D Printed Tubes Subjected to Lateral Loading Condition","authors":"Mahmoud M. Awd Allah, Mohamed A. Abbas, Ali Saeed Almuflih, Samy F. Mahmoud, Marwa A. Abd El-baky","doi":"10.1007/s12221-024-00756-5","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this research is to investigate the effect of different infill pattern structures on the deformation behavior and crashworthiness performance of 3D-printed tubes under quasi-static lateral compression loading. Subsequently, polylactic-acid (PLA) was utilized in the 3D printing process to create the proposed tubes. Five distinct infill pattern structures were fabricated: circular, square, triangular, zig-zag, and cross patterns, each designed with a consistent infill density of 50%. Following that, quasi-static lateral compression loading was applied to the printed structure. The failure histories were tracked, and the crashing load and energy absorbed versus displacement responses were provided for the tested tubes. Several indications were measured to conduct the crashworthiness examination, i.e., the initial peak load (<span>\\({F}_{\\text{ip}}\\)</span>), total absorbed energy (AE), and specific energy absorption (SEA). Furthermore, the complex proportional assessment (COPRAS) method, was employed to identify the optimal infill pattern for maximizing crashworthiness performance. The analysis showed that the zig-zag infill pattern with 2.13 kN, 62.52 J, and 2.90 J/g, respectively, for <span>\\({F}_{\\text{ip}}\\)</span>, AE, and SEA, showed the maximum performance in energy absorption among the investigated patterns, according to the COPRAS analysis.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 11","pages":"4437 - 4451"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00756-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this research is to investigate the effect of different infill pattern structures on the deformation behavior and crashworthiness performance of 3D-printed tubes under quasi-static lateral compression loading. Subsequently, polylactic-acid (PLA) was utilized in the 3D printing process to create the proposed tubes. Five distinct infill pattern structures were fabricated: circular, square, triangular, zig-zag, and cross patterns, each designed with a consistent infill density of 50%. Following that, quasi-static lateral compression loading was applied to the printed structure. The failure histories were tracked, and the crashing load and energy absorbed versus displacement responses were provided for the tested tubes. Several indications were measured to conduct the crashworthiness examination, i.e., the initial peak load (\({F}_{\text{ip}}\)), total absorbed energy (AE), and specific energy absorption (SEA). Furthermore, the complex proportional assessment (COPRAS) method, was employed to identify the optimal infill pattern for maximizing crashworthiness performance. The analysis showed that the zig-zag infill pattern with 2.13 kN, 62.52 J, and 2.90 J/g, respectively, for \({F}_{\text{ip}}\), AE, and SEA, showed the maximum performance in energy absorption among the investigated patterns, according to the COPRAS analysis.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers