Contact properties of titanium nitride electrode in vertical channel-all-around indium–gallium–zinc–oxide transistors

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xianglie Sun, Shujuan Mao, Congyan Lu, Di Geng, Ling Li, Guilei Wang, Chao Zhao
{"title":"Contact properties of titanium nitride electrode in vertical channel-all-around indium–gallium–zinc–oxide transistors","authors":"Xianglie Sun,&nbsp;Shujuan Mao,&nbsp;Congyan Lu,&nbsp;Di Geng,&nbsp;Ling Li,&nbsp;Guilei Wang,&nbsp;Chao Zhao","doi":"10.1007/s10854-024-13781-0","DOIUrl":null,"url":null,"abstract":"<div><p>Source/drain contact resistance (<i>R</i><sub>SD</sub>) is a decider of device performance in nanoscale indium–gallium–zinc–oxide (IGZO) transistors, especially in the ones featuring a vertical channel. In this work, titanium nitride (TiN), prepared by magnetron sputtering (MS) and ion beam sputtering (IBS), is adopted as the S/D electrodes of vertical channel-all-around (VCAA) IGZO transistors, and the contact properties are revealed. Both MS-TiN and IBS-TiN form Schottky contacts on IGZO, strongly limiting the ON-state current (<i>I</i><sub>ON</sub>) of VCAA IGZO devices with a 50 nm gate length. Such Schottky contacts result from metal oxidation during the atomic layer deposition (ALD) process of IGZO. IBS-TiN/IGZO shows a lower <i>R</i><sub>SD</sub> of 7.41 × 10<sup>−2</sup> MΩ as compared to MS-TiN/IGZO with an <i>R</i><sub>SD</sub> of 2.15 MΩ. The two kinds of TiN have an almost equal work function (<i>φ</i><sub>WF</sub>) of around 4.7 eV, the lower <i>R</i><sub>SD</sub> of IBS-TiN/IGZO is derived from the reduced tunneling resistance rather than Schottky barrier resistance. IBS-TiN appears denser with no detectable intergranular porosity whereas MS-TiN presents a typical microstructure comprising coarse and columnar grains with visible intercolumnar porosities, making IBS-TiN more robust against oxidation than MS-TiN. Also, the higher N/Ti ratio in IBS-TiN strengthens its antioxidation characteristic to some extent.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 31","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13781-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Source/drain contact resistance (RSD) is a decider of device performance in nanoscale indium–gallium–zinc–oxide (IGZO) transistors, especially in the ones featuring a vertical channel. In this work, titanium nitride (TiN), prepared by magnetron sputtering (MS) and ion beam sputtering (IBS), is adopted as the S/D electrodes of vertical channel-all-around (VCAA) IGZO transistors, and the contact properties are revealed. Both MS-TiN and IBS-TiN form Schottky contacts on IGZO, strongly limiting the ON-state current (ION) of VCAA IGZO devices with a 50 nm gate length. Such Schottky contacts result from metal oxidation during the atomic layer deposition (ALD) process of IGZO. IBS-TiN/IGZO shows a lower RSD of 7.41 × 10−2 MΩ as compared to MS-TiN/IGZO with an RSD of 2.15 MΩ. The two kinds of TiN have an almost equal work function (φWF) of around 4.7 eV, the lower RSD of IBS-TiN/IGZO is derived from the reduced tunneling resistance rather than Schottky barrier resistance. IBS-TiN appears denser with no detectable intergranular porosity whereas MS-TiN presents a typical microstructure comprising coarse and columnar grains with visible intercolumnar porosities, making IBS-TiN more robust against oxidation than MS-TiN. Also, the higher N/Ti ratio in IBS-TiN strengthens its antioxidation characteristic to some extent.

垂直沟道式氧化铟镓锌晶体管中氮化钛电极的接触特性
源极/漏极接触电阻(RSD)是纳米级氧化铟镓锌(IGZO)晶体管器件性能的决定因素,尤其是在具有垂直沟道的晶体管中。在这项研究中,采用磁控溅射(MS)和离子束溅射(IBS)制备的氮化钛(TiN)作为垂直沟道环绕型(VCAA)IGZO 晶体管的 S/D 电极,并揭示了其接触特性。MS-TiN 和 IBS-TiN 在 IGZO 上都形成了肖特基接触,极大地限制了栅极长度为 50 nm 的 VCAA IGZO 器件的导通态电流 (ION)。这种肖特基接触是 IGZO 原子层沉积 (ALD) 过程中金属氧化的结果。与 RSD 为 2.15 MΩ 的 MS-TiN/IGZO 相比,IBS-TiN/IGZO 的 RSD 更低,为 7.41 × 10-2 MΩ。这两种 TiN 的功函数 (φWF) 几乎相等,都在 4.7 eV 左右,IBS-TiN/IGZO 的 RSD 较低是由于隧道电阻而不是肖特基势垒电阻降低所致。IBS-TiN 显得更致密,没有可检测到的晶间孔隙,而 MS-TiN 则呈现出典型的微观结构,包括粗大的柱状晶粒和明显的柱间孔隙,这使得 IBS-TiN 比 MS-TiN 具有更强的抗氧化能力。此外,IBS-TiN 中较高的 N/Ti 比率也在一定程度上增强了其抗氧化特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信