Potential of Silymarin and Metformin Co-Loaded Nanostructured Lipid Carriers Containing Mucoadhesive Thermogel on KB Cells of Oral Cancer

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Meghanath Shete, Ashwini Deshpande, Pravin Shende
{"title":"Potential of Silymarin and Metformin Co-Loaded Nanostructured Lipid Carriers Containing Mucoadhesive Thermogel on KB Cells of Oral Cancer","authors":"Meghanath Shete,&nbsp;Ashwini Deshpande,&nbsp;Pravin Shende","doi":"10.1007/s10876-024-02714-w","DOIUrl":null,"url":null,"abstract":"<div><p>The current work aimed to prepare silymarin (SMR) and metformin (MTH)-loaded nanostructured lipid carriers (NLCs) added in-situ thermoresponsive gel for the treatment of oral cancer. In brief, the nanostructured lipid carriers were designed using Compritol and oleic acid whereas the mucoadhesive sol-gel thermoresponsive system was prepared using gellan gum/Poloxamer. The obtained SMR/MTH-NLCs were characterized for Fourier transform infrared spectroscopy–attenuated total reflectance, scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM), particle size, zeta potential, in-vitro release, etc. Moreover, the SMR/MTH-NLCs incorporated gel was characterized for sol-gel temperature, viscosity, ex-vivo mucoadhesion, etc. Here, SMR/MTH-NLCs showed a spherical shape with a particle size of 258.2 ± 1.2 nm and zeta potential − 35 ± 0.2 mV, respectively. Further, the sol-gel transition could form gel at 35.2 ± 0.5 ℃ providing site-specific and sustained release of SMR and MTH. Ex-vivo permeation of formulation exhibited longer retention that confirmed the good mucoadhesion potential of gellan gum. The cell viability studies demonstrated a significant reduction of KB oral cancer cells that confirms the increased synergistic anticancer effects of SMR/MTH-NLCs incorporated gel (IC<sub>50</sub> = 0.65 ± 0.12 µM) than free drug combination. These findings illicit the potential of SMR/MTH-NLCs incorporated gel formulation to localize delivery of SMR and MTH at buccal mucosa in the treatment of oral cancer.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3011 - 3023"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02714-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The current work aimed to prepare silymarin (SMR) and metformin (MTH)-loaded nanostructured lipid carriers (NLCs) added in-situ thermoresponsive gel for the treatment of oral cancer. In brief, the nanostructured lipid carriers were designed using Compritol and oleic acid whereas the mucoadhesive sol-gel thermoresponsive system was prepared using gellan gum/Poloxamer. The obtained SMR/MTH-NLCs were characterized for Fourier transform infrared spectroscopy–attenuated total reflectance, scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM), particle size, zeta potential, in-vitro release, etc. Moreover, the SMR/MTH-NLCs incorporated gel was characterized for sol-gel temperature, viscosity, ex-vivo mucoadhesion, etc. Here, SMR/MTH-NLCs showed a spherical shape with a particle size of 258.2 ± 1.2 nm and zeta potential − 35 ± 0.2 mV, respectively. Further, the sol-gel transition could form gel at 35.2 ± 0.5 ℃ providing site-specific and sustained release of SMR and MTH. Ex-vivo permeation of formulation exhibited longer retention that confirmed the good mucoadhesion potential of gellan gum. The cell viability studies demonstrated a significant reduction of KB oral cancer cells that confirms the increased synergistic anticancer effects of SMR/MTH-NLCs incorporated gel (IC50 = 0.65 ± 0.12 µM) than free drug combination. These findings illicit the potential of SMR/MTH-NLCs incorporated gel formulation to localize delivery of SMR and MTH at buccal mucosa in the treatment of oral cancer.

Graphical Abstract

含有黏附性热凝胶的水飞蓟素和二甲双胍共负载纳米结构脂质载体对口腔癌 KB 细胞的作用潜力
目前的研究旨在制备水飞蓟素(SMR)和二甲双胍(MTH)负载的纳米结构脂质载体(NLCs),并添加原位热致伸缩凝胶,用于治疗口腔癌。简而言之,纳米结构脂质载体是用康普瑞托和油酸设计的,而粘液粘附性溶胶-凝胶热致伸缩系统则是用结冷胶/聚羟丙基醚制备的。对所获得的 SMR/MTH-NLCs 进行了傅立叶变换红外光谱-衰减全反射、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)、粒度、ZETA 电位、体外释放等表征。此外,还对加入 SMR/MTH-NLCs 的凝胶进行了溶胶-凝胶温度、粘度、体内外粘附性等表征。结果表明,SMR/MTH-NLCs 呈球形,粒径为 258.2 ± 1.2 nm,zeta 电位为 - 35 ± 0.2 mV。此外,溶胶-凝胶转变可在 35.2 ± 0.5 ℃ 的温度下形成凝胶,从而实现 SMR 和 MTH 的定点和持续释放。制剂的体内外渗透表现出较长的保留时间,这证实了结冷胶具有良好的粘附潜力。细胞存活率研究表明,KB 口腔癌细胞明显减少,这证实了与游离药物组合相比,加入 SMR/MTH-NLCs 的凝胶(IC50 = 0.65 ± 0.12 µM)具有更强的协同抗癌效果。这些发现表明,SMR/MTH-NLCs凝胶制剂具有在口腔粘膜局部释放SMR和MTH治疗口腔癌的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信