Dissipative systems have a maximum energy rate density of 105 W/kg

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Martin van Duin
{"title":"Dissipative systems have a maximum energy rate density of 105 W/kg","authors":"Martin van Duin","doi":"10.1140/epjb/s10051-024-00785-2","DOIUrl":null,"url":null,"abstract":"<div><p>Mass and energy rate (ER) data have been collected for a wide variety of dissipative systems from the biological, cultural, and cosmological realms. They range from 6 × 10<sup>–25</sup> kg and 3 × 10<sup>–25</sup> W for a synthetic, molecular engine to 1.5 × 10<sup>53</sup> kg and 10<sup>48</sup> W for the observable universe and, thus, span 78 mass and 73 ER orders of magnitude, respectively. The combination of (i) convergence of smaller systems (parts) to a larger system and (ii) scaling of ER as a function of mass with a power law constant β &gt; 0 for groups of systems, explains why the ER and mass data points fall in a diagonal band in the double logarithmic ER <i>vs.</i> mass master plot. There appears to be an ER <i>vs.</i> mass limit, corresponding to an energy rate density (ERD = ER/mass) of around 10<sup>5</sup> W/kg, separating stable, dissipative systems from unstable, “explosive” systems (atomic weapons, supernova, <i>etc.</i>) in all realms. This limit is probably the result of a balance between the energy flow through a system, resulting in increased temperature and pressure, and the strength of the system’s structure and boundary. ERD has been proposed as a metric for the development of the complexity of dissipative systems over deep time Chaisson (Cosmic evolution; The rise of complexity in nature. Harvard University Press, Cambridge, 2002), Chaisson (Sci World J 384912, 2014). Thus, the observed ERD threshold of 10<sup>5</sup> W/kg may correspond to a maximum of complexity. Several ways to further increase complexity while circumventing this ERD limit are proposed.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00785-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Mass and energy rate (ER) data have been collected for a wide variety of dissipative systems from the biological, cultural, and cosmological realms. They range from 6 × 10–25 kg and 3 × 10–25 W for a synthetic, molecular engine to 1.5 × 1053 kg and 1048 W for the observable universe and, thus, span 78 mass and 73 ER orders of magnitude, respectively. The combination of (i) convergence of smaller systems (parts) to a larger system and (ii) scaling of ER as a function of mass with a power law constant β > 0 for groups of systems, explains why the ER and mass data points fall in a diagonal band in the double logarithmic ER vs. mass master plot. There appears to be an ER vs. mass limit, corresponding to an energy rate density (ERD = ER/mass) of around 105 W/kg, separating stable, dissipative systems from unstable, “explosive” systems (atomic weapons, supernova, etc.) in all realms. This limit is probably the result of a balance between the energy flow through a system, resulting in increased temperature and pressure, and the strength of the system’s structure and boundary. ERD has been proposed as a metric for the development of the complexity of dissipative systems over deep time Chaisson (Cosmic evolution; The rise of complexity in nature. Harvard University Press, Cambridge, 2002), Chaisson (Sci World J 384912, 2014). Thus, the observed ERD threshold of 105 W/kg may correspond to a maximum of complexity. Several ways to further increase complexity while circumventing this ERD limit are proposed.

Graphical abstract

耗散系统的最大能量密度为 105 W/kg
我们已经收集了来自生物、文化和宇宙学领域的各种耗散系统的质量和能量速率(ER)数据。它们的范围从合成分子引擎的 6 × 10-25 千克和 3 × 10-25 瓦到可观测宇宙的 1.5 × 1053 千克和 1048 瓦,因此分别跨越了 78 个质量数量级和 73 个能量数量级。(i)较小的系统(部分)向较大的系统靠拢,(ii)ER 与质量的函数缩放,对于系统组来说,幂律常数 β > 0,这两个因素的结合解释了为什么 ER 和质量数据点落在 ER 与质量双对数主图的对角线带上。ER与质量的关系似乎存在一个极限,对应于大约105瓦/千克的能量率密度(ERD = ER/质量),在所有领域中将稳定的耗散系统与不稳定的 "爆炸 "系统(原子武器、超新星等)区分开来。这一极限可能是能量流经系统(导致温度和压力升高)与系统结构和边界强度之间平衡的结果。有人提出,ERD 是耗散系统的复杂性随深度时间发展的度量标准,柴森(《宇宙演化;自然界复杂性的崛起》,哈佛大学出版社,剑桥。哈佛大学出版社,剑桥,2002 年),Chaisson(科学世界 J 384912,2014 年)。因此,观测到的ERD阈值105 W/kg可能对应于复杂性的最大值。本文提出了几种在规避ERD限制的同时进一步提高复杂性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信