Chemical bonding in some anticancer NHC complexes [RʹC≡C → ML] (M=Cu (I), Ag (I), Au (I); Rʹ=C10H7 and C9NH12SO2; L=NHC (R) and P (R)3; and R=F, Cl, Br, H, CH3, SiH3, Ph)
{"title":"Chemical bonding in some anticancer NHC complexes [RʹC≡C → ML] (M=Cu (I), Ag (I), Au (I); Rʹ=C10H7 and C9NH12SO2; L=NHC (R) and P (R)3; and R=F, Cl, Br, H, CH3, SiH3, Ph)","authors":"Bahareh Naderizadeh, Mehdi Bayat","doi":"10.1007/s13738-024-03108-5","DOIUrl":null,"url":null,"abstract":"<div><p>Among the new complexes, metal N-heterocyclic carbene (NHC) complexes have recently gained remarkable attention as they are entirely appropriate prerequisites for effective drug design and quick optimization. Furthermore, N-heterocyclic carbenes (NHCs) like phosphines contain strong σ-donating properties, which can bind to metals and create stable complexes. This article reports a general theoretical discussion on the structures and nature of C<sub>(carbene/alkenyl)</sub> → M, P → M and C≡C bonds. Also, the influence of changing L and Rʹ groups in some adducts of [RʹC≡C → ML], (M=Cu (I), Ag (I), Au (I); R'=C<sub>10</sub>H<sub>7</sub>, C<sub>9</sub>NH<sub>12</sub>SO<sub>2</sub>; L=NHC (R), P (R)<sub>3</sub>; and R=F, Cl, Br, H, CH<sub>3</sub>, SiH<sub>3</sub>, Ph) has been studied. In this context, DFT calculations by PBE-D3/def2-TZVP level of theory have been used. The nature of C<sub>(carbene/alkenyl)</sub> → M bonds in [RʹC≡C → MNHCR] and also P → M and C<sub>(alkenyl)</sub> → M bonds in [RʹC≡C → MPR<sub>3</sub>] complexes was surveyed. This was done using natural bond orbital (NBO), atoms in molecules (AIM), energy decomposition analysis (EDA), and energy decomposition analysis natural orbital for chemical valence (EDA-NOCV). The data have shown that σ donation from C<sub>(alkenyl)</sub> to M atom in [RʹC≡C → MPR<sub>3</sub>] complexes was greater than corresponding [RʹC≡C → MNHCR] complexes. Also, the C<sub>(alkenyl)</sub> → M bonds in corresponding complexes were predominantly electrostatic. In addition, the C≡C bond has been also investigated by applying AIM, EDA, and ETS-NOCV analysis. The outcomes indicate that the highest percentage of interaction energy for C≡C bond is related to covalent interaction.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03108-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Among the new complexes, metal N-heterocyclic carbene (NHC) complexes have recently gained remarkable attention as they are entirely appropriate prerequisites for effective drug design and quick optimization. Furthermore, N-heterocyclic carbenes (NHCs) like phosphines contain strong σ-donating properties, which can bind to metals and create stable complexes. This article reports a general theoretical discussion on the structures and nature of C(carbene/alkenyl) → M, P → M and C≡C bonds. Also, the influence of changing L and Rʹ groups in some adducts of [RʹC≡C → ML], (M=Cu (I), Ag (I), Au (I); R'=C10H7, C9NH12SO2; L=NHC (R), P (R)3; and R=F, Cl, Br, H, CH3, SiH3, Ph) has been studied. In this context, DFT calculations by PBE-D3/def2-TZVP level of theory have been used. The nature of C(carbene/alkenyl) → M bonds in [RʹC≡C → MNHCR] and also P → M and C(alkenyl) → M bonds in [RʹC≡C → MPR3] complexes was surveyed. This was done using natural bond orbital (NBO), atoms in molecules (AIM), energy decomposition analysis (EDA), and energy decomposition analysis natural orbital for chemical valence (EDA-NOCV). The data have shown that σ donation from C(alkenyl) to M atom in [RʹC≡C → MPR3] complexes was greater than corresponding [RʹC≡C → MNHCR] complexes. Also, the C(alkenyl) → M bonds in corresponding complexes were predominantly electrostatic. In addition, the C≡C bond has been also investigated by applying AIM, EDA, and ETS-NOCV analysis. The outcomes indicate that the highest percentage of interaction energy for C≡C bond is related to covalent interaction.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.