Synthesis of Magnetic Nanocomposites Based on Imidazole Zeolite-8 Framework Doped with Silver Nanoparticles for Effective Removal of Norfloxacin from Effluents

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Mohammad Mehdi Sadughi, Alijan Mazani, Marzieh Varnaseri, Eshagh Barfar, Nezamaddin Mengelizadeh, Davoud Balarak
{"title":"Synthesis of Magnetic Nanocomposites Based on Imidazole Zeolite-8 Framework Doped with Silver Nanoparticles for Effective Removal of Norfloxacin from Effluents","authors":"Mohammad Mehdi Sadughi,&nbsp;Alijan Mazani,&nbsp;Marzieh Varnaseri,&nbsp;Eshagh Barfar,&nbsp;Nezamaddin Mengelizadeh,&nbsp;Davoud Balarak","doi":"10.1007/s10876-024-02707-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an operative technique was presented for the synthesis of the magnetically separable γ-Fe<sub>2</sub>O<sub>3</sub>@SiO<sub>2</sub>@ZIF8@Ag photocatalyst. The synthesized nanostructures were identified using various structural analyses, including XRD, EDX/SEM, FTIR, bandgap, and VSM. Their ability to remove norfloxacin (NOR) was then examined by studying the effects of various parameters, including photocatalyst dose, solution pH, initial NOR concentration, and reaction time. The results showed that the catalyst had the best performance, with an efficiency of 100% under UV light and 96.2%unnder visible light, at a catalyst dose of 0.4 g/L and a reaction time of 45 min. Stability tests also showed that the synthesized photocatalyst maintained its proper performance after five cycles, and its efficiency was reduced by only 4.5%. Also, a comparison between the adsorption and the photocatalytic process showed that the adsorption process removed only 42% of NOR after 60 min, whereas the photocatalytic process, under both visible and UV light irradiation, was able to eliminate 100% of NOR in the same time period. The results showed that the degradation kinetics follow the first-order kinetic model. The reaction rate constants using UV and visible lamps were 0.082 and 0.056 min<sup>− 1</sup>, respectively, which indicates the degradation rate for UV light is 1.46 times higher compared to visible light. Also, the half-life times for the process with UV and visible light were 8.4 and 12.3 min, respectively. The average oxidation state (AOS) and carbon oxidation state (COS) of the process increased over time, indicating good degradation of NOR and conversion of non-biodegradable wastewater into biodegradable wastewater. Reactive oxygen species (ROS) assays showed that hydroxyl radicals and holes have the main role in the degradation process. Therefore, the proposed photocatalysts can be considered suitable, cost-effective, and reusable for the treatment of hospital wastewater.</p><h3>Graphical abstracts</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2991 - 3009"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02707-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an operative technique was presented for the synthesis of the magnetically separable γ-Fe2O3@SiO2@ZIF8@Ag photocatalyst. The synthesized nanostructures were identified using various structural analyses, including XRD, EDX/SEM, FTIR, bandgap, and VSM. Their ability to remove norfloxacin (NOR) was then examined by studying the effects of various parameters, including photocatalyst dose, solution pH, initial NOR concentration, and reaction time. The results showed that the catalyst had the best performance, with an efficiency of 100% under UV light and 96.2%unnder visible light, at a catalyst dose of 0.4 g/L and a reaction time of 45 min. Stability tests also showed that the synthesized photocatalyst maintained its proper performance after five cycles, and its efficiency was reduced by only 4.5%. Also, a comparison between the adsorption and the photocatalytic process showed that the adsorption process removed only 42% of NOR after 60 min, whereas the photocatalytic process, under both visible and UV light irradiation, was able to eliminate 100% of NOR in the same time period. The results showed that the degradation kinetics follow the first-order kinetic model. The reaction rate constants using UV and visible lamps were 0.082 and 0.056 min− 1, respectively, which indicates the degradation rate for UV light is 1.46 times higher compared to visible light. Also, the half-life times for the process with UV and visible light were 8.4 and 12.3 min, respectively. The average oxidation state (AOS) and carbon oxidation state (COS) of the process increased over time, indicating good degradation of NOR and conversion of non-biodegradable wastewater into biodegradable wastewater. Reactive oxygen species (ROS) assays showed that hydroxyl radicals and holes have the main role in the degradation process. Therefore, the proposed photocatalysts can be considered suitable, cost-effective, and reusable for the treatment of hospital wastewater.

Graphical abstracts

Abstract Image

基于掺杂银纳米颗粒的咪唑沸石-8 框架的磁性纳米复合材料的合成,用于有效去除污水中的诺氟沙星
本研究介绍了一种合成可磁性分离的 γ-Fe2O3@SiO2@ZIF8@Ag 光催化剂的操作技术。通过 XRD、EDX/SEM、傅立叶变换红外光谱、带隙和 VSM 等各种结构分析,确定了合成的纳米结构。然后,通过研究光催化剂剂量、溶液 pH 值、NOR 初始浓度和反应时间等各种参数的影响,考察了它们去除诺氟沙星(NOR)的能力。结果表明,在催化剂剂量为 0.4 克/升、反应时间为 45 分钟时,催化剂的性能最佳,紫外光下的效率为 100%,可见光下的效率为 96.2%。稳定性测试还表明,合成的光催化剂在五个循环后仍能保持其正常性能,效率仅降低了 4.5%。此外,对吸附过程和光催化过程进行的比较显示,吸附过程在 60 分钟后只能去除 42% 的 NOR,而光催化过程在可见光和紫外线的照射下,在相同的时间内能去除 100% 的 NOR。结果表明,降解动力学遵循一阶动力学模型。紫外线灯和可见光灯的反应速率常数分别为 0.082 和 0.056 min- 1,这表明紫外线灯的降解速率是可见光灯的 1.46 倍。此外,紫外线和可见光的半衰期分别为 8.4 分钟和 12.3 分钟。该过程的平均氧化态(AOS)和碳氧化态(COS)随着时间的推移而增加,表明 NOR 降解效果良好,可将不可生物降解的废水转化为可生物降解的废水。活性氧(ROS)检测表明,羟基自由基和空穴在降解过程中起主要作用。因此,可以认为所提出的光催化剂适用于医院废水的处理,具有成本效益并可重复使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信