{"title":"Laser-Induced Highly Stable Conductive Hydrogels for Robust Bioelectronics","authors":"Yibo Li, Hao Zhou, Huayong Yang, Kaichen Xu","doi":"10.1007/s40820-024-01519-w","DOIUrl":null,"url":null,"abstract":"<p>Despite the promising progress in conductive hydrogels made with pure conducting polymer, great challenges remain in the interface adhesion and robustness in long-term monitoring. To address these challenges, Prof. Seung Hwan Ko and Taek-Soo Kim’s team introduced a laser-induced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates. The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm<sup>−1</sup> with a spatial resolution down to 5 μm. Moreover, they maintain impedance and charge-storage capacity even after 1 h of sonication. The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings, highlighting their promising role in the field of bioelectronics.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01519-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01519-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the promising progress in conductive hydrogels made with pure conducting polymer, great challenges remain in the interface adhesion and robustness in long-term monitoring. To address these challenges, Prof. Seung Hwan Ko and Taek-Soo Kim’s team introduced a laser-induced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates. The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm−1 with a spatial resolution down to 5 μm. Moreover, they maintain impedance and charge-storage capacity even after 1 h of sonication. The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings, highlighting their promising role in the field of bioelectronics.
尽管使用纯导电聚合物制造导电水凝胶取得了可喜的进展,但在界面粘附性和长期监测的稳健性方面仍存在巨大挑战。为了应对这些挑战,Seung Hwan Ko 教授和 Taek-Soo Kim 的团队引入了一种激光诱导相分离和粘附方法,用于在聚合物基底上制造由纯聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐组成的导电水凝胶。经激光诱导相分离和粘附处理的导电聚合物可选择性地转化为导电水凝胶,其湿电导率为 101.4 S cm-1,空间分辨率低至 5 μm。此外,即使经过 1 小时的超声处理,它们仍能保持阻抗和电荷储存能力。微图案电极阵列证明了它们在长期体内信号记录方面的潜力,凸显了它们在生物电子学领域大有可为的作用。
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.