Govardhan Katta Radhakrishna, Sameera Hammigi Ramesh, Shannon D. Almeida, Golla Sireesha, Soundarya Ramesh, Panneerselvam Theivendren, A. Santhana Krishna Kumar, Kumarappan Chidamabaram, Damodar Nayak Ammunje, Selvaraj Kunjiappan, Parasuraman Pavadai
{"title":"Capsaicin-Entangled Multi-Walled Carbon Nanotubes Against Breast Cancer: A Theoretical and Experimental Approach","authors":"Govardhan Katta Radhakrishna, Sameera Hammigi Ramesh, Shannon D. Almeida, Golla Sireesha, Soundarya Ramesh, Panneerselvam Theivendren, A. Santhana Krishna Kumar, Kumarappan Chidamabaram, Damodar Nayak Ammunje, Selvaraj Kunjiappan, Parasuraman Pavadai","doi":"10.1007/s10876-024-02694-x","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional treatment strategies suffer from a lack of solubility, low bioavailability at the target site, a lack of target specificity, and indiscriminate drug distribution, all of which lead to drug resistance. Therefore, the present study aimed to deliver capsaicin into breast cancer cells through folic acid-conjugated capsaicin-loaded carboxylic acid-functionalised multiwalled carbon nanotubes (FA-CAP-COOHMWCNTs). FA-CAP-COOHMWCNTs was formulated and characterized by FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy), HR-TEM (High-resolution transmission electron microscopy), and XRD (X-ray diffraction) analysis. In silico studies demonstrated that the active molecule, capsaicin can strongly bind onto C-SRC kinase receptor to suppress cancer progression. The in vitro cellular viability of MCF-7 breast cancer cells after 24h treatment with 100 µg × mL<sup>− 1</sup> of FA-CAP-COOHMWCNTs was found to be 29.27 ± 2.59% and IC<sub>50</sub> value was observed to be 22.71 µg × mL<sup>− 1</sup>. Subsequently, in vivo anticancer activity of FA-CAP-COOHMWCNTs was performed against 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer in female Wistar rats. After 21 days of treatment with FA-CAP-COOHMWCNTs, breast cancer-induced rats showed a significant reduction in mammary tumor size, and elevated levels of antioxidant enzymes in serum/breast tissue. The most powerful antioxidant effects were seen in the medium dose (5 mg × kg<sup>− 1</sup>) of FA-CAP-COOHMWCNTs, which also caused tumors to shrink significantly, almost as much as the standard drug (doxorubicin). Histopathological studies also showed near-normal architecture of breast tissue. Altogether, it can be interpreted that FA-CAP-COOHMWCNTs have antiproliferative efficacy against breast tumor progression in breast cancer-induced rats.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2849 - 2869"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02694-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional treatment strategies suffer from a lack of solubility, low bioavailability at the target site, a lack of target specificity, and indiscriminate drug distribution, all of which lead to drug resistance. Therefore, the present study aimed to deliver capsaicin into breast cancer cells through folic acid-conjugated capsaicin-loaded carboxylic acid-functionalised multiwalled carbon nanotubes (FA-CAP-COOHMWCNTs). FA-CAP-COOHMWCNTs was formulated and characterized by FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy), HR-TEM (High-resolution transmission electron microscopy), and XRD (X-ray diffraction) analysis. In silico studies demonstrated that the active molecule, capsaicin can strongly bind onto C-SRC kinase receptor to suppress cancer progression. The in vitro cellular viability of MCF-7 breast cancer cells after 24h treatment with 100 µg × mL− 1 of FA-CAP-COOHMWCNTs was found to be 29.27 ± 2.59% and IC50 value was observed to be 22.71 µg × mL− 1. Subsequently, in vivo anticancer activity of FA-CAP-COOHMWCNTs was performed against 7,12-dimethylbenz(a) anthracene (DMBA)-induced breast cancer in female Wistar rats. After 21 days of treatment with FA-CAP-COOHMWCNTs, breast cancer-induced rats showed a significant reduction in mammary tumor size, and elevated levels of antioxidant enzymes in serum/breast tissue. The most powerful antioxidant effects were seen in the medium dose (5 mg × kg− 1) of FA-CAP-COOHMWCNTs, which also caused tumors to shrink significantly, almost as much as the standard drug (doxorubicin). Histopathological studies also showed near-normal architecture of breast tissue. Altogether, it can be interpreted that FA-CAP-COOHMWCNTs have antiproliferative efficacy against breast tumor progression in breast cancer-induced rats.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.