P. Vinothkumar, S. Praveen Kumar, A. Anancia Grace, T. Sivakumar, A. Paul Dhinakaran
{"title":"Investigation on dysprosium (Dy3+) doped lithium boro-phosphate glass for light-emitting diode (LED) and supercapacitor applications","authors":"P. Vinothkumar, S. Praveen Kumar, A. Anancia Grace, T. Sivakumar, A. Paul Dhinakaran","doi":"10.1007/s10854-024-13795-8","DOIUrl":null,"url":null,"abstract":"<div><p>Dy<sup>3+</sup> doped B<sub>2</sub>O<sub>3</sub>-P<sub>2</sub>O<sub>5</sub>-Ta<sub>2</sub>O<sub>5</sub>-Li<sub>2</sub>CO<sub>3</sub>- Al<sub>2</sub>O<sub>3</sub>-NaF-Dy<sub>2</sub>O<sub>3</sub> (BPTLAND) glass was prepared using the melt-quenching method. The Dy<sup>3+</sup> doped BPTLAND glass amorphous form was confirmed by an analysis of powder X-ray diffraction. Using EDAX and SEM analyses, the chemical compositions and surface morphology of the prepared glass were examined. FTIR and Raman analysis identified the presence of borate and phosphate groups. Absorption spectroscopy examined the glass’s optical characteristics, with a refractive index of 1.4 at 2 eV and an optical band gap found to be an indirect band gap. The band gap is determined by the intercept of the tangent to the x-axis, which is 2.80 eV. Photoluminescence research revealed dominating emission peaks at 573 nm wavelength. The CIE chromaticity coordinates of the prepared glass were found to exhibit daylight, are <i>x</i> = 0.3647, <i>y</i> = 0.4762, and the Correlated color temperature was found to be 4823 K. The produced glass’s ferromagnetic characteristics were confirmed using VSM analysis to evaluate the hysteresis loop’s retentivity and coercivity of magnetic behavior. Using galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), the electrochemical properties of the generated electrodes in a 5 M KOH electrolyte were examined. After 2000 cycles, the glass electrode doped with Dy<sup>3+</sup> (BPTLAND) displays the greatest specific capacitance value (258.12 F g<sup>−1</sup> for GCD). Scan rate behavior was unique and exhibited redox behavior. In addition, the anodic–cathodic peak difference increases with increasing peak density as the scan rate increases, suggesting that the material is quasi-reversible. The flawless double capacitance characteristic of Dy<sup>3+</sup> doped BPTLAND glass was demonstrated by each CV, which showed a regular rectangle. The charge transfer resistance for this electrode was found to be 34.53 (Ω cm<sup>2</sup>) whereas the ohmic resistance is 14.21 (Ω cm<sup>2</sup>). The working electrode’s capacity for long cycling performance was consistent CV curve after 5000 cycles indicating the electrode maintains good structural and electrochemical stability over prolonged cycling. The findings therefore confirmed that Dy<sup>3+</sup> doped lithium borophosphate BPTLAND glass has a great deal of promise for advancement as electrode materials in the context of LED and supercapacitor applications.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 31","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13795-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dy3+ doped B2O3-P2O5-Ta2O5-Li2CO3- Al2O3-NaF-Dy2O3 (BPTLAND) glass was prepared using the melt-quenching method. The Dy3+ doped BPTLAND glass amorphous form was confirmed by an analysis of powder X-ray diffraction. Using EDAX and SEM analyses, the chemical compositions and surface morphology of the prepared glass were examined. FTIR and Raman analysis identified the presence of borate and phosphate groups. Absorption spectroscopy examined the glass’s optical characteristics, with a refractive index of 1.4 at 2 eV and an optical band gap found to be an indirect band gap. The band gap is determined by the intercept of the tangent to the x-axis, which is 2.80 eV. Photoluminescence research revealed dominating emission peaks at 573 nm wavelength. The CIE chromaticity coordinates of the prepared glass were found to exhibit daylight, are x = 0.3647, y = 0.4762, and the Correlated color temperature was found to be 4823 K. The produced glass’s ferromagnetic characteristics were confirmed using VSM analysis to evaluate the hysteresis loop’s retentivity and coercivity of magnetic behavior. Using galvanostatic charge–discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), the electrochemical properties of the generated electrodes in a 5 M KOH electrolyte were examined. After 2000 cycles, the glass electrode doped with Dy3+ (BPTLAND) displays the greatest specific capacitance value (258.12 F g−1 for GCD). Scan rate behavior was unique and exhibited redox behavior. In addition, the anodic–cathodic peak difference increases with increasing peak density as the scan rate increases, suggesting that the material is quasi-reversible. The flawless double capacitance characteristic of Dy3+ doped BPTLAND glass was demonstrated by each CV, which showed a regular rectangle. The charge transfer resistance for this electrode was found to be 34.53 (Ω cm2) whereas the ohmic resistance is 14.21 (Ω cm2). The working electrode’s capacity for long cycling performance was consistent CV curve after 5000 cycles indicating the electrode maintains good structural and electrochemical stability over prolonged cycling. The findings therefore confirmed that Dy3+ doped lithium borophosphate BPTLAND glass has a great deal of promise for advancement as electrode materials in the context of LED and supercapacitor applications.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.