Qing Li, Lizhen Chen, Yingying Wang, Tao Pan and Huan Pang
{"title":"Research progress on modification of cathodes for aqueous zinc ion batteries","authors":"Qing Li, Lizhen Chen, Yingying Wang, Tao Pan and Huan Pang","doi":"10.1039/D4QM00740A","DOIUrl":null,"url":null,"abstract":"<p >Aqueous zinc-ion batteries (ZIBs) have garnered much attention as promising candidates for future large-scale electrochemical energy storage solutions. Their appeal lies in their cost-effectiveness, low emissions, inherent safety, and competitive energy density. Therefore, the design and improvement of high-performance AZIBs have been extensively studied. In this review, we categorize and compare the design strategies, electrochemical performance, challenges, and modifications of various cathodes including manganese (Mn)-based materials, vanadium(<small>V</small>)-based materials, Prussian blue analogs (PBAs), layered transition metal dichalcogenides, and organic materials. Meanwhile, strategies for enhancing performance are discussed. Finally, we summarize the challenges faced by cathodes in AZIBs and propose future research directions. Overall, exploring different cathodes provides researchers with guidance in selecting appropriate materials to further enhance the AZIBs’ performance.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 22","pages":" 3702-3723"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00740a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-ion batteries (ZIBs) have garnered much attention as promising candidates for future large-scale electrochemical energy storage solutions. Their appeal lies in their cost-effectiveness, low emissions, inherent safety, and competitive energy density. Therefore, the design and improvement of high-performance AZIBs have been extensively studied. In this review, we categorize and compare the design strategies, electrochemical performance, challenges, and modifications of various cathodes including manganese (Mn)-based materials, vanadium(V)-based materials, Prussian blue analogs (PBAs), layered transition metal dichalcogenides, and organic materials. Meanwhile, strategies for enhancing performance are discussed. Finally, we summarize the challenges faced by cathodes in AZIBs and propose future research directions. Overall, exploring different cathodes provides researchers with guidance in selecting appropriate materials to further enhance the AZIBs’ performance.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.