{"title":"Covalent attachment of Mn-porphyrin onto functionalized activated carbon for green oxidation of olefins","authors":"Saeed Rayati, Makan Etefagh","doi":"10.1007/s13738-024-03114-7","DOIUrl":null,"url":null,"abstract":"<div><p>Complexes of first row transition metals are a promising class of inexpensive catalysts for oxidation reactions. In this work, we studied the influence of covalent immobilization of Mn-porphyrin onto the surface of activated carbon in the green oxidation of various olefins. <i>meso</i>-tetrakis(4-carboxyphenyl)porphyrinatomanganese(III) acetate (MnTCPP) immobilized onto hydroxylated activated carbon (AC-OH). The anchored catalyst was characterized using FTIR, UV–VIS, atomic absorption and EDX spectroscopies. TGA analysis and BET-BJH method were employed to determine thermal behavior and surface properties of complex respectively. Then, catalytic performance of MnTCPP@AC-OH was investigated in the green oxidation of olefins with molecular oxygen and hydrogen peroxide. A comparison between two green oxidants (molecular oxygen and hydrogen peroxide) shows that although more product is obtained with hydrogen peroxide, more recyclability is obtained with molecular oxygen. The separation and recovery of the nanocatalyst was simple, effective and economical in this green oxidation method and the supported catalyst can be reused at least five times without significant loss of activity.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03114-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Complexes of first row transition metals are a promising class of inexpensive catalysts for oxidation reactions. In this work, we studied the influence of covalent immobilization of Mn-porphyrin onto the surface of activated carbon in the green oxidation of various olefins. meso-tetrakis(4-carboxyphenyl)porphyrinatomanganese(III) acetate (MnTCPP) immobilized onto hydroxylated activated carbon (AC-OH). The anchored catalyst was characterized using FTIR, UV–VIS, atomic absorption and EDX spectroscopies. TGA analysis and BET-BJH method were employed to determine thermal behavior and surface properties of complex respectively. Then, catalytic performance of MnTCPP@AC-OH was investigated in the green oxidation of olefins with molecular oxygen and hydrogen peroxide. A comparison between two green oxidants (molecular oxygen and hydrogen peroxide) shows that although more product is obtained with hydrogen peroxide, more recyclability is obtained with molecular oxygen. The separation and recovery of the nanocatalyst was simple, effective and economical in this green oxidation method and the supported catalyst can be reused at least five times without significant loss of activity.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.