Microalgal Density and Mass Estimation Using Low-Cost Spectrometer: NIR-VIS Modeling With Evolutionary Optimization

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
W. K. Wong;Yuan Ju Teoh;Filbert H. Juwono;Jessica Ling;Sie Yon Lau
{"title":"Microalgal Density and Mass Estimation Using Low-Cost Spectrometer: NIR-VIS Modeling With Evolutionary Optimization","authors":"W. K. Wong;Yuan Ju Teoh;Filbert H. Juwono;Jessica Ling;Sie Yon Lau","doi":"10.1109/LSENS.2024.3484432","DOIUrl":null,"url":null,"abstract":"Estimating microalgal concentration can be a nontrivial endeavor due to their nonlinearity at high cell densities. The conventional estimation method is cell counting, which is time consuming and leads to inaccurate readings. Alternatively, spectral reflectance provides a more precise measurement by using specific wavelengths that correspond directly to pigment absorption in microalgae, allowing for faster determination of cell density and biomass. Unfortunately, the experiment is usually conducted in the laboratory with expensive and high-resolution devices. In this letter, we build a low-cost, real-time Internet-of-Things-based spectral prototype sensor for estimating density and mass of microalgae. The device uses wavelengths in the range of 400–1000 nm, making it low resolution. Multi expression programming is employed to model the measured data. Results show that nonlinear models perform better with \n<inline-formula><tex-math>$R^{2}$</tex-math></inline-formula>\n values spanning from 0.93 to 0.99 for two species of microalgae.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10734234/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating microalgal concentration can be a nontrivial endeavor due to their nonlinearity at high cell densities. The conventional estimation method is cell counting, which is time consuming and leads to inaccurate readings. Alternatively, spectral reflectance provides a more precise measurement by using specific wavelengths that correspond directly to pigment absorption in microalgae, allowing for faster determination of cell density and biomass. Unfortunately, the experiment is usually conducted in the laboratory with expensive and high-resolution devices. In this letter, we build a low-cost, real-time Internet-of-Things-based spectral prototype sensor for estimating density and mass of microalgae. The device uses wavelengths in the range of 400–1000 nm, making it low resolution. Multi expression programming is employed to model the measured data. Results show that nonlinear models perform better with $R^{2}$ values spanning from 0.93 to 0.99 for two species of microalgae.
利用低成本光谱仪估算微藻密度和质量:利用进化优化进行近红外-可见光谱建模
由于高细胞密度下的非线性特性,估算微藻浓度并非易事。传统的估算方法是细胞计数,这种方法既耗时又会导致读数不准确。另一种方法是光谱反射法,通过使用与微藻中色素吸收直接对应的特定波长,可提供更精确的测量,从而更快地确定细胞密度和生物量。遗憾的是,该实验通常是在实验室中使用昂贵的高分辨率设备进行的。在这封信中,我们建立了一个低成本、基于物联网的实时光谱原型传感器,用于估算微藻的密度和质量。该设备使用的波长范围为 400-1000 纳米,因此分辨率较低。采用多重表达式编程为测量数据建模。结果表明,非线性模型性能更好,两种微藻的 R^{2}$ 值从 0.93 到 0.99 不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信