{"title":"A High-Fidelity, Low-Cost Visuotactile Sensor for Rolling Tactile Perception","authors":"Lintao Xie;Guitao Yu;Tianhong Tong;Yang He;Dongtai Liang","doi":"10.1109/LSENS.2024.3477913","DOIUrl":null,"url":null,"abstract":"In this letter, a low-cost but high-fidelity rolling tactile system is proposed for distinguishing patterns on curved surfaces, including an improved vision-based tactile sensor (VBTS) and a novel lightweight processing framework. The proposed VBTS contains a modular ring-shaped illumination configuration and an improved sensing elastomer, which is easy to fabricate without complex processing and costs only 16.95 USD in total. To achieve real-time data processing of rolling tactile images, inspired by event-based cameras, an efficient processing framework is introduced based on computer graphics, which can integrate sparse rolling tactile images into complete high-fidelity images for the final classification. To evaluate the effectiveness of the proposed system, a classification model is trained using a dataset generated by 13 cylinders with similar textures, where the identification accuracy of validation is up to 98.3%. Then, we test each cylinder sample for three rolling tactile perceptions and achieve 100% identification accuracy within 1.2 s on average, indicating a promising prospect of the proposed perception system for real-time application.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10713189/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, a low-cost but high-fidelity rolling tactile system is proposed for distinguishing patterns on curved surfaces, including an improved vision-based tactile sensor (VBTS) and a novel lightweight processing framework. The proposed VBTS contains a modular ring-shaped illumination configuration and an improved sensing elastomer, which is easy to fabricate without complex processing and costs only 16.95 USD in total. To achieve real-time data processing of rolling tactile images, inspired by event-based cameras, an efficient processing framework is introduced based on computer graphics, which can integrate sparse rolling tactile images into complete high-fidelity images for the final classification. To evaluate the effectiveness of the proposed system, a classification model is trained using a dataset generated by 13 cylinders with similar textures, where the identification accuracy of validation is up to 98.3%. Then, we test each cylinder sample for three rolling tactile perceptions and achieve 100% identification accuracy within 1.2 s on average, indicating a promising prospect of the proposed perception system for real-time application.