In Jae Lee , Dae Hee Kim , Jiwon Hahm , Hongki Yoo , Seung-Woo Kim , Young-Jin Kim
{"title":"Non-destructive thickness measurement of Si wafers via optical third-harmonic generation with femtosecond laser pulses","authors":"In Jae Lee , Dae Hee Kim , Jiwon Hahm , Hongki Yoo , Seung-Woo Kim , Young-Jin Kim","doi":"10.1016/j.rio.2024.100755","DOIUrl":null,"url":null,"abstract":"<div><div>Si wafers are vital substrate materials in semiconductor manufacturing and require precise non-destructive thickness measurements. However, the conventional electrical and optical measurement techniques are limited by depth selectivity and system complexity. Here, we propose a simple, high-precision, non-destructive thickness measurement method based on surface-sensitive optical third-harmonic generation at both sides of Si wafers. We irradiated a highly stabilized near-infrared femtosecond pulse laser with a broad spectrum and central wavelength of 1550 nm on the Si wafers, which are non-transparent in the visible to ultraviolet wavelength range. Using the proposed system, the thickness of the certified reference wafer was measured, yielding results that fall within the certified uncertainty.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950124001524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Si wafers are vital substrate materials in semiconductor manufacturing and require precise non-destructive thickness measurements. However, the conventional electrical and optical measurement techniques are limited by depth selectivity and system complexity. Here, we propose a simple, high-precision, non-destructive thickness measurement method based on surface-sensitive optical third-harmonic generation at both sides of Si wafers. We irradiated a highly stabilized near-infrared femtosecond pulse laser with a broad spectrum and central wavelength of 1550 nm on the Si wafers, which are non-transparent in the visible to ultraviolet wavelength range. Using the proposed system, the thickness of the certified reference wafer was measured, yielding results that fall within the certified uncertainty.