{"title":"Exploring the thermoelectric performance of NiFeMnAl and ZnFeVAl as novel quaternary Heusler compounds","authors":"Abhigyan Ojha, Rama Krushna Sabat, Sivaiah Bathula","doi":"10.1016/j.mseb.2024.117789","DOIUrl":null,"url":null,"abstract":"<div><div>Quaternary Heusler (QH) compounds, characterized by the chemical formula XX’YZ, are highly regarded in the energy materials sector due to their versatile electronic structures. The current study focuses on synthesizing novel QH compounds, NiFeMnAl and ZnFeVAl, through arc-melting followed by hot-pressing at 1073 K. Maximum Seebeck coefficients were exhibited ∼ −20.48 μV/K and ∼ −17.25 μV/K at 773 K for ZnFeVAl and NiFeMnAl, respectively. The evaluated power factor was ∼ 0.058 mWm<sup>−1</sup>K<sup>−2</sup> for NiFeMnAl and ∼ 0.020 mWm<sup>−1</sup>K<sup>−2</sup> for ZnFeVAl at 773 K. Furthermore, the lattice thermal conductivity (κ<sub>l</sub>) was exhibited ∼ 8.73 Wm<sup>−1</sup>K<sup>−1</sup> for NiFeMnAl and ∼ 6.92 Wm<sup>−1</sup>K<sup>−1</sup> for ZnFeVAl at 773 K, with ZnFeVAl exhibiting a ∼ 20.73 % lower κ<sub>l</sub> attributed to chemical bonding distortion arising from differences in constituent element electronegativity. Hence, these novel compounds offer a promising avenue for further research in TE materials, aiming to realize higher-performance materials for practical TE device applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"311 ","pages":"Article 117789"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006184","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quaternary Heusler (QH) compounds, characterized by the chemical formula XX’YZ, are highly regarded in the energy materials sector due to their versatile electronic structures. The current study focuses on synthesizing novel QH compounds, NiFeMnAl and ZnFeVAl, through arc-melting followed by hot-pressing at 1073 K. Maximum Seebeck coefficients were exhibited ∼ −20.48 μV/K and ∼ −17.25 μV/K at 773 K for ZnFeVAl and NiFeMnAl, respectively. The evaluated power factor was ∼ 0.058 mWm−1K−2 for NiFeMnAl and ∼ 0.020 mWm−1K−2 for ZnFeVAl at 773 K. Furthermore, the lattice thermal conductivity (κl) was exhibited ∼ 8.73 Wm−1K−1 for NiFeMnAl and ∼ 6.92 Wm−1K−1 for ZnFeVAl at 773 K, with ZnFeVAl exhibiting a ∼ 20.73 % lower κl attributed to chemical bonding distortion arising from differences in constituent element electronegativity. Hence, these novel compounds offer a promising avenue for further research in TE materials, aiming to realize higher-performance materials for practical TE device applications.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.