{"title":"Revealing dynamic sulfidation of WC-WO3 heterogeneous nanoparticles: In situ formation of WS2 facilitates sulfur redox in Li–S battery","authors":"Yongzheng Zhu, Shanfeng Yang, Zheng Wei, Huibing He, Yanqiu Zhu, Jinliang Zhu","doi":"10.1016/j.carbon.2024.119790","DOIUrl":null,"url":null,"abstract":"<div><div>The sluggish redox kinetics of S species and the notorious shuttling effect of lithium polysulfides (LiPSs) severely impeded the practical application of lithium-sulfur (Li–S) batteries. Herein, we successfully synthesized WC-WO<sub>3</sub> heterogeneous nanoparticles dispersed on porous carbon substrate (WC-WO<sub>3</sub>/C) as the promoter for high-efficiency LiPSs conversion. These nanoparticles combine the robust adsorption capacity of WO<sub>3</sub> with the excellent electrical conductivity of WC. Additionally, we studied the dynamic sulfidation behavior of WC-WO<sub>3</sub> heterogeneous nanoparticles during the electrochemical process through in situ characterization. A new active phase of WS<sub>2</sub> was generated, effectively enhancing the bidirectional redox of Li<sub>2</sub>S. The Li–S battery armed with the WC-WO<sub>3</sub>-WS<sub>2</sub>/C@S cathode demonstrated outstanding cycling stability, with a capacity retention of 95.3 % at 2C after 800 cycles. The pouch cell exhibited an impressive energy density of 423.3 Wh kg<sup>−1</sup>. This work not only contributes to a thorough understanding of the mechanism behind sulfidation behavior in regulating redox kinetics of LiPSs but also offers guidance for the design of electrocatalysts for high-performance Li–S batteries based on sulfidation.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"232 ","pages":"Article 119790"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010091","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The sluggish redox kinetics of S species and the notorious shuttling effect of lithium polysulfides (LiPSs) severely impeded the practical application of lithium-sulfur (Li–S) batteries. Herein, we successfully synthesized WC-WO3 heterogeneous nanoparticles dispersed on porous carbon substrate (WC-WO3/C) as the promoter for high-efficiency LiPSs conversion. These nanoparticles combine the robust adsorption capacity of WO3 with the excellent electrical conductivity of WC. Additionally, we studied the dynamic sulfidation behavior of WC-WO3 heterogeneous nanoparticles during the electrochemical process through in situ characterization. A new active phase of WS2 was generated, effectively enhancing the bidirectional redox of Li2S. The Li–S battery armed with the WC-WO3-WS2/C@S cathode demonstrated outstanding cycling stability, with a capacity retention of 95.3 % at 2C after 800 cycles. The pouch cell exhibited an impressive energy density of 423.3 Wh kg−1. This work not only contributes to a thorough understanding of the mechanism behind sulfidation behavior in regulating redox kinetics of LiPSs but also offers guidance for the design of electrocatalysts for high-performance Li–S batteries based on sulfidation.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.