{"title":"Development of a numerical methodology for the simulation of active-pressurization of cryogenic tanks","authors":"Francesca Rossetti , Marco Pizzarelli , Rocco Carmine Pellegrini , Enrico Cavallini , Matteo Bernardini","doi":"10.1016/j.cryogenics.2024.103959","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a numerical methodology, which is suitable to describe the main thermo-fluid-dynamics phenomena characterizing the active-pressurization inside cryogenic tanks, is proposed. This task is carried out comparing the numerical predictions obtained with several models with experimental results, retrieved from the literature, of a ground-based active-pressurization experiment of a liquid nitrogen (N<sub>2</sub>) tank pressurized with high temperature gaseous N<sub>2</sub>. The tank is modeled as 2D axisymmetric, and the solution of the heat conduction through the tank wall is coupled to the fluid-dynamic solution by means of a conjugate heat transfer model. The two-phase fluid interface is tracked using the Volume-of-Fluid (VOF) method, and the phase transition is calculated with the Lee model. Temperature varying thermophysical properties are considered for the vapor and the wall, given the wide operational temperature range. The proposed methodology allows to accurately reproduce both the pressure rise rate during gas injection and the pressure drop occurring after the end of gas injection. Finally, the results show that the introduction of a turbulence model is necessary to describe, with higher fidelity, the active-pressurization phase and that, among the tested models, the SST <span><math><mi>k</mi><mo>−</mo><mi>ω</mi></math></span> with low-Reynolds corrections is the most adequate to represent the pressure decrease occurring after the end of gas injection.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"144 ","pages":"Article 103959"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001796","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a numerical methodology, which is suitable to describe the main thermo-fluid-dynamics phenomena characterizing the active-pressurization inside cryogenic tanks, is proposed. This task is carried out comparing the numerical predictions obtained with several models with experimental results, retrieved from the literature, of a ground-based active-pressurization experiment of a liquid nitrogen (N2) tank pressurized with high temperature gaseous N2. The tank is modeled as 2D axisymmetric, and the solution of the heat conduction through the tank wall is coupled to the fluid-dynamic solution by means of a conjugate heat transfer model. The two-phase fluid interface is tracked using the Volume-of-Fluid (VOF) method, and the phase transition is calculated with the Lee model. Temperature varying thermophysical properties are considered for the vapor and the wall, given the wide operational temperature range. The proposed methodology allows to accurately reproduce both the pressure rise rate during gas injection and the pressure drop occurring after the end of gas injection. Finally, the results show that the introduction of a turbulence model is necessary to describe, with higher fidelity, the active-pressurization phase and that, among the tested models, the SST with low-Reynolds corrections is the most adequate to represent the pressure decrease occurring after the end of gas injection.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics