{"title":"Catalytic steam reforming of waste tire pyrolysis volatiles using a tire char catalyst for high yield hydrogen-rich syngas","authors":"Yukun Li, Paul T. Williams","doi":"10.1016/j.fuproc.2024.108150","DOIUrl":null,"url":null,"abstract":"<div><div>The production of hydrogen and syngas (H<sub>2</sub>/CO) from waste tires by pyrolysis catalytic steam reforming was investigated in a two-stage fixed bed reactor. In this study, tire char served as a sacrificial catalyst, facilitating the combination of catalytic steam reforming and char steam gasification reactions. The tire char acted as both a catalyst and a gasification reactant, enhancing the gas product yield. The process parameters investigated were, a reforming temperature range of 700–1000 °C, steam space velocity between 2 and 12 g h<sup>−1</sup> g<sup>−1</sup><sub>char</sub> and reaction times of 0.5–2 h. The influence of the parameters on the yield and composition of the product gases and the characteristics of the used catalyst were analyzed in detail. The results indicated that higher temperature and steam space velocity increased H<sub>2</sub> and CO yields in the presence of a tire char catalyst. Elemental analysis of the used tire char, surface morphology and pore structure provided insights into the extent of tire char consumption in the reaction. Prolonged reaction time allowed for more thorough reactions between the pyrolysis volatiles and tire char, promoting the production of H<sub>2</sub>. At a reaction time of 2 h, the H<sub>2</sub> yield reached 223 mmol g<sup>−1</sup>, representing 74 wt% of the maximum hydrogen yield.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"265 ","pages":"Article 108150"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024001206","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The production of hydrogen and syngas (H2/CO) from waste tires by pyrolysis catalytic steam reforming was investigated in a two-stage fixed bed reactor. In this study, tire char served as a sacrificial catalyst, facilitating the combination of catalytic steam reforming and char steam gasification reactions. The tire char acted as both a catalyst and a gasification reactant, enhancing the gas product yield. The process parameters investigated were, a reforming temperature range of 700–1000 °C, steam space velocity between 2 and 12 g h−1 g−1char and reaction times of 0.5–2 h. The influence of the parameters on the yield and composition of the product gases and the characteristics of the used catalyst were analyzed in detail. The results indicated that higher temperature and steam space velocity increased H2 and CO yields in the presence of a tire char catalyst. Elemental analysis of the used tire char, surface morphology and pore structure provided insights into the extent of tire char consumption in the reaction. Prolonged reaction time allowed for more thorough reactions between the pyrolysis volatiles and tire char, promoting the production of H2. At a reaction time of 2 h, the H2 yield reached 223 mmol g−1, representing 74 wt% of the maximum hydrogen yield.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.