Hangyu Xu , Chenyu Huang , Tengfei Xu , Zexi Liu , Rong Zhao , Jiale He , Tiange Zhao , Xiao Fu
{"title":"Gate-tunable in-sensor computing vdW heterostructures for infrared photodetection","authors":"Hangyu Xu , Chenyu Huang , Tengfei Xu , Zexi Liu , Rong Zhao , Jiale He , Tiange Zhao , Xiao Fu","doi":"10.1016/j.infrared.2024.105611","DOIUrl":null,"url":null,"abstract":"<div><div>Convolutional preprocessing is feasible for feature extraction and accurate recognition. In-sensor computing, which requires a photodetector with a computation function, is a potential candidate for hardware-implemented preprocessing. However, limited by the high carrier concentration in infrared sensing materials, reconfigurable manipulation of photocarriers is hardly complemented. Thus, previous works mostly focused on preprocessing in the visible range. Here, we propose a gate-tunable BP/MoS<sub>2</sub> heterostructure. With an elaborate design on the material’s thickness, the depletion region can be precisely controlled, resulting in multiple and reconfigurable responsivity states. With a sharp and clean interface, our device shows strong linear dependence over the broadband spectrum, which is the prerequisite for constructing convolutional kernels. Furthermore, observing the maximum photocurrent in the <em>V<sub>g</sub></em> sweeping process demonstrates strong regulation of carrier concentration in the infrared sensing material, BP layer. Since it has superior performance in high linearity and multiple states construction, our device is suitable for realizing computation in photodetector for convolutional preprocessing, underscoring its superiority in intelligent infrared perception and preprocessing.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135044952400495X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional preprocessing is feasible for feature extraction and accurate recognition. In-sensor computing, which requires a photodetector with a computation function, is a potential candidate for hardware-implemented preprocessing. However, limited by the high carrier concentration in infrared sensing materials, reconfigurable manipulation of photocarriers is hardly complemented. Thus, previous works mostly focused on preprocessing in the visible range. Here, we propose a gate-tunable BP/MoS2 heterostructure. With an elaborate design on the material’s thickness, the depletion region can be precisely controlled, resulting in multiple and reconfigurable responsivity states. With a sharp and clean interface, our device shows strong linear dependence over the broadband spectrum, which is the prerequisite for constructing convolutional kernels. Furthermore, observing the maximum photocurrent in the Vg sweeping process demonstrates strong regulation of carrier concentration in the infrared sensing material, BP layer. Since it has superior performance in high linearity and multiple states construction, our device is suitable for realizing computation in photodetector for convolutional preprocessing, underscoring its superiority in intelligent infrared perception and preprocessing.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.