A modified dubinin-radushkevich model describing the cryogenic adsorption of 4He on carbon materials

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Teng Pan , Fangqiu Yu , Ke Li , Zhenxing Zhu , Fei Wei , Wei Dai , Jun Shen
{"title":"A modified dubinin-radushkevich model describing the cryogenic adsorption of 4He on carbon materials","authors":"Teng Pan ,&nbsp;Fangqiu Yu ,&nbsp;Ke Li ,&nbsp;Zhenxing Zhu ,&nbsp;Fei Wei ,&nbsp;Wei Dai ,&nbsp;Jun Shen","doi":"10.1016/j.cryogenics.2024.103977","DOIUrl":null,"url":null,"abstract":"<div><div>The <sup>4</sup>He and <sup>3</sup>He adsorption characteristics of porous materials serve as important references for designing and optimizing cryogenic components or systems, including adsorption pumps, helium adsorption refrigerators, and gas-gap heat switches. In this study, various types of activated carbon and carbon nanotubes were measured for their <sup>4</sup>He adsorption characteristics in the range of 3–20 K and 1–18000 Pa. Parameters such as micropore volume and adsorption potential energy of porous materials were analyzed through Dubinin-Radushkevich (DR) model. A modified DR model describing the monolayer adsorption of <sup>4</sup>He on different carbon-based adsorbents was developed in this study, greatly facilitating the design of adsorption systems. Further, the <sup>4</sup>He adsorption model was applied to gas-gap heat switches, and a numerical model of the <sup>4</sup>He gas-gap heat switch was established, which accurately predicts the actuation characteristics of several heat switches.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"144 ","pages":"Article 103977"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001978","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The 4He and 3He adsorption characteristics of porous materials serve as important references for designing and optimizing cryogenic components or systems, including adsorption pumps, helium adsorption refrigerators, and gas-gap heat switches. In this study, various types of activated carbon and carbon nanotubes were measured for their 4He adsorption characteristics in the range of 3–20 K and 1–18000 Pa. Parameters such as micropore volume and adsorption potential energy of porous materials were analyzed through Dubinin-Radushkevich (DR) model. A modified DR model describing the monolayer adsorption of 4He on different carbon-based adsorbents was developed in this study, greatly facilitating the design of adsorption systems. Further, the 4He adsorption model was applied to gas-gap heat switches, and a numerical model of the 4He gas-gap heat switch was established, which accurately predicts the actuation characteristics of several heat switches.
描述碳材料低温吸附 4He 的杜宾-拉杜什凯维奇修正模型
多孔材料的 4He 和 3He 吸附特性是设计和优化低温元件或系统(包括吸附泵、氦吸附制冷器和气隙热交换器)的重要参考。本研究测量了各种类型的活性炭和碳纳米管在 3-20 K 和 1-18000 Pa 范围内的 4He 吸附特性。通过杜宾-拉杜什基维奇(Dubinin-Radushkevich,DR)模型分析了多孔材料的微孔体积和吸附势能等参数。该研究建立了一个描述 4He 在不同碳基吸附剂上单层吸附的改进 DR 模型,大大方便了吸附系统的设计。此外,还将 4He 吸附模型应用于气隙热开关,并建立了 4He 气隙热开关的数值模型,准确预测了多个热开关的致动特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信