{"title":"Metal additive manufacturing of damage-controlled elements for structural protection of steel members","authors":"Hamdy Farhoud , Islam Mantawy","doi":"10.1016/j.matdes.2024.113428","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops hybrid steel members by integrating additively manufactured, ultra-lightweight, damage-controlled elements (DCEs) into hot-rolled structural steel members. This approach relies on segmenting a structural member into distinct sections; one or two segments are enlarged to be capacity protected; however, another<!--> <!-->end or middle DCE segment is optimized to emulate the<!--> <!-->conventional member’s strength and stiffness. A small-scale DCE was topologically optimized and then additively manufactured using a<!--> <!-->powder bed fusion technique through a<!--> <!-->direct metal laser sintering process of 17-4PH stainless steel and<!--> <!-->then was experimentally tested to study the buckling behavior under compression. The experimental testing of the optimized DCE shows a<!--> <!-->compressive strength of 81,000 times the specimen’s weight with stable post-peak buckling behavior. Numerical simulation confirms experimental results, showing a<!--> <!-->good correlation in fracture energy. A parametric study on four DCE specimens, scaled up by three, four, five, and six times, was performed and compared to hollow structural sections (HSS) of A500 Gr. C in tensile and compression strengths. The numerical simulation shows a linear relation between the weight ratio and HSS length. Additionally, numerical simulation of conventional member, DCE (scaled by three), and three hybrid members revealed that failure occurred in DCE as intended.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113428"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008037","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops hybrid steel members by integrating additively manufactured, ultra-lightweight, damage-controlled elements (DCEs) into hot-rolled structural steel members. This approach relies on segmenting a structural member into distinct sections; one or two segments are enlarged to be capacity protected; however, another end or middle DCE segment is optimized to emulate the conventional member’s strength and stiffness. A small-scale DCE was topologically optimized and then additively manufactured using a powder bed fusion technique through a direct metal laser sintering process of 17-4PH stainless steel and then was experimentally tested to study the buckling behavior under compression. The experimental testing of the optimized DCE shows a compressive strength of 81,000 times the specimen’s weight with stable post-peak buckling behavior. Numerical simulation confirms experimental results, showing a good correlation in fracture energy. A parametric study on four DCE specimens, scaled up by three, four, five, and six times, was performed and compared to hollow structural sections (HSS) of A500 Gr. C in tensile and compression strengths. The numerical simulation shows a linear relation between the weight ratio and HSS length. Additionally, numerical simulation of conventional member, DCE (scaled by three), and three hybrid members revealed that failure occurred in DCE as intended.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.