Twists of graded Poisson algebras and related properties

IF 1.6 3区 数学 Q1 MATHEMATICS
Xin Tang , Xingting Wang , James J. Zhang
{"title":"Twists of graded Poisson algebras and related properties","authors":"Xin Tang ,&nbsp;Xingting Wang ,&nbsp;James J. Zhang","doi":"10.1016/j.geomphys.2024.105344","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a Poisson version of the graded twist of a graded associative algebra and prove that every graded Poisson structure on a connected graded polynomial ring <span><math><mi>A</mi><mo>:</mo><mo>=</mo><mi>k</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> is a graded twist of a unimodular Poisson structure on <em>A</em>, namely, if <em>π</em> is a graded Poisson structure on <em>A</em>, then <em>π</em> has a decomposition<span><span><span><math><mi>π</mi><mspace></mspace><mo>=</mo><mspace></mspace><msub><mrow><mi>π</mi></mrow><mrow><mi>u</mi><mi>n</mi><mi>i</mi><mi>m</mi></mrow></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>deg</mi><mo>⁡</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfrac><mi>E</mi><mo>∧</mo><mi>m</mi></math></span></span></span> where <em>E</em> is the Euler derivation, <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>u</mi><mi>n</mi><mi>i</mi><mi>m</mi></mrow></msub></math></span> is the unimodular graded Poisson structure on <em>A</em> corresponding to <em>π</em>, and <strong>m</strong> is the modular derivation of <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>π</mi><mo>)</mo></math></span>. This result is a generalization of the same one in the quadratic setting. The rigidity of graded twisting, <span><math><mi>P</mi><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-minimality, and <em>H</em>-ozoneness are studied. As an application, we compute the Poisson cohomologies of the quadratic Poisson structures on the polynomial ring of three variables when the potential is irreducible, but not necessarily having an isolated singularity.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002456","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a Poisson version of the graded twist of a graded associative algebra and prove that every graded Poisson structure on a connected graded polynomial ring A:=k[x1,,xn] is a graded twist of a unimodular Poisson structure on A, namely, if π is a graded Poisson structure on A, then π has a decompositionπ=πunim+1i=1ndegxiEm where E is the Euler derivation, πunim is the unimodular graded Poisson structure on A corresponding to π, and m is the modular derivation of (A,π). This result is a generalization of the same one in the quadratic setting. The rigidity of graded twisting, PH1-minimality, and H-ozoneness are studied. As an application, we compute the Poisson cohomologies of the quadratic Poisson structures on the polynomial ring of three variables when the potential is irreducible, but not necessarily having an isolated singularity.
分级泊松代数的扭转及相关性质
我们引入了分级关联代数的分级捻度的泊松版本,并证明连通的分级多项式环 A 上的每一个分级泊松结构都是 A 上一个单模泊松结构的分级捻度:=k[x1,...,xn]上的每一个有级泊松结构都是 A 上的单模泊松结构的有级扭转,即如果 π 是 A 上的有级泊松结构,那么 π 有一个分解π=πunim+1∑i=1ndegxiE∧m,其中 E 是欧拉导数,πunim 是与 π 对应的 A 上的单模有级泊松结构,m 是 (A,π) 的模导数。这一结果是同一结果在二次方程中的推广。我们还研究了分级扭曲的刚性、PH1-最小性和 H-ozoneness 。作为应用,我们计算了三变量多项式环上二次泊松结构的泊松同调,当势能是不可还原的,但不一定具有孤立奇点时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信