{"title":"Persistent components in Canny's generalized characteristic polynomial","authors":"Gleb Pogudin","doi":"10.1016/j.jsc.2024.102397","DOIUrl":null,"url":null,"abstract":"<div><div>When using resultants for elimination, one standard issue is that the resultant vanishes if the variety contains components of dimension larger than the expected dimension. J. Canny proposed an elegant construction, generalized characteristic polynomial, to address this issue by symbolically perturbing the system before the resultant computation. Such perturbed resultant would typically involve artefact components only loosely related to the geometry of the variety of interest. For removing these components, J.M. Rojas proposed to take the greatest common divisor of the results of two different perturbations. In this paper, we investigate this construction, and show that the extra components persistent under taking different perturbations must come either from singularities or from positive-dimensional fibers.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124001019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
When using resultants for elimination, one standard issue is that the resultant vanishes if the variety contains components of dimension larger than the expected dimension. J. Canny proposed an elegant construction, generalized characteristic polynomial, to address this issue by symbolically perturbing the system before the resultant computation. Such perturbed resultant would typically involve artefact components only loosely related to the geometry of the variety of interest. For removing these components, J.M. Rojas proposed to take the greatest common divisor of the results of two different perturbations. In this paper, we investigate this construction, and show that the extra components persistent under taking different perturbations must come either from singularities or from positive-dimensional fibers.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.