{"title":"Cauchy-Schwarz bounded trade-off weighting for causal inference with small sample sizes","authors":"Qin Ma, Shikui Tu, Lei Xu","doi":"10.1016/j.ijar.2024.109311","DOIUrl":null,"url":null,"abstract":"<div><div>The difficulty of causal inference for small-sample-size data lies in the issue of inefficiency that the variance of the estimators may be large. Some existing weighting methods adopt the idea of bias-variance trade-off, but they require manual specification of the trade-off parameters. To overcome this drawback, in this article, we propose a Cauchy-Schwarz Bounded Trade-off Weighting (CBTW) method, in which the trade-off parameter is theoretically derived to guarantee a small Mean Square Error (MSE) in estimation. We theoretically prove that optimizing the objective function of CBTW, which is the Cauchy-Schwarz upper-bound of the MSE for causal effect estimators, contributes to minimizing the MSE. Moreover, since the upper-bound consists of the variance and the squared <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-norm of covariate differences, CBTW can not only estimate the causal effects efficiently, but also keep the covariates balanced. Experimental results on both simulation data and real-world data show that the CBTW outperforms most existing methods especially under small sample size scenarios.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001981","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The difficulty of causal inference for small-sample-size data lies in the issue of inefficiency that the variance of the estimators may be large. Some existing weighting methods adopt the idea of bias-variance trade-off, but they require manual specification of the trade-off parameters. To overcome this drawback, in this article, we propose a Cauchy-Schwarz Bounded Trade-off Weighting (CBTW) method, in which the trade-off parameter is theoretically derived to guarantee a small Mean Square Error (MSE) in estimation. We theoretically prove that optimizing the objective function of CBTW, which is the Cauchy-Schwarz upper-bound of the MSE for causal effect estimators, contributes to minimizing the MSE. Moreover, since the upper-bound consists of the variance and the squared -norm of covariate differences, CBTW can not only estimate the causal effects efficiently, but also keep the covariates balanced. Experimental results on both simulation data and real-world data show that the CBTW outperforms most existing methods especially under small sample size scenarios.