On the expansiveness of coarse maps between Banach spaces and geometry preservation

IF 1.7 2区 数学 Q1 MATHEMATICS
Bruno M. Braga , Gilles Lancien
{"title":"On the expansiveness of coarse maps between Banach spaces and geometry preservation","authors":"Bruno M. Braga ,&nbsp;Gilles Lancien","doi":"10.1016/j.jfa.2024.110724","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a new notion of embeddability between Banach spaces. By studying the classical Mazur map, we show that it is strictly weaker than the notion of coarse embeddability. We use the techniques from metric cotype introduced by M. Mendel and A. Naor to prove results about cotype preservation and complete our study of embeddability between <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> spaces. We confront our notion with nonlinear invariants introduced by N. Kalton, which are defined in terms of concentration properties for Lipschitz maps defined on countably branching Hamming or interlaced graphs. Finally, we address the problem of the embeddability into <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004129","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new notion of embeddability between Banach spaces. By studying the classical Mazur map, we show that it is strictly weaker than the notion of coarse embeddability. We use the techniques from metric cotype introduced by M. Mendel and A. Naor to prove results about cotype preservation and complete our study of embeddability between p spaces. We confront our notion with nonlinear invariants introduced by N. Kalton, which are defined in terms of concentration properties for Lipschitz maps defined on countably branching Hamming or interlaced graphs. Finally, we address the problem of the embeddability into .
论巴拿赫空间与几何保全之间粗糙映射的广延性
我们引入了巴拿赫空间之间可嵌入性的新概念。通过研究经典的马祖尔映射,我们证明了它比粗糙可嵌入性概念更弱。我们使用 M. Mendel 和 A. Naor 引入的度量原型技术来证明关于原型保存的结果,并完成对 ℓp 空间间可嵌入性的研究。我们将我们的概念与 N. Kalton 引入的非线性不变式相比较,后者是根据定义在可数分支汉明图或交错图上的 Lipschitz 映射的集中特性定义的。最后,我们讨论了可嵌入ℓ∞的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信