A tiered NARX model for forecasting day-ahead energy production in distributed solar PV systems

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Sameer Al-Dahidi , Mohammad Alrbai , Bilal Rinchi , Loiy Al-Ghussain , Osama Ayadi , Ali Alahmer
{"title":"A tiered NARX model for forecasting day-ahead energy production in distributed solar PV systems","authors":"Sameer Al-Dahidi ,&nbsp;Mohammad Alrbai ,&nbsp;Bilal Rinchi ,&nbsp;Loiy Al-Ghussain ,&nbsp;Osama Ayadi ,&nbsp;Ali Alahmer","doi":"10.1016/j.clet.2024.100831","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a hierarchical forecasting approach for day-ahead energy production in distributed solar Photovoltaic (PV) systems using a tiered Nonlinear Autoregressive Exogenous (NARX) model. The methodology was applied to 52 PV systems installed at The University of Jordan, covering three prediction scales: fleet-wide, zone-specific, and site-specific. The model incorporated weather data, including solar irradiation, temperature, and humidity, to forecast the next day's energy production. Based on a new metric called the <span><math><mrow><mi>O</mi><mi>v</mi><mi>e</mi><mi>r</mi><mi>a</mi><mi>l</mi><mi>l</mi><mspace></mspace><mi>M</mi><mi>e</mi><mi>t</mi><mi>r</mi><mi>i</mi><mi>c</mi></mrow></math></span>, fleet-wide predictions outperform the zone-specific and site-specific averages by 3.21% and 5.35%, respectively. Normalized Root Mean Square Errors (<span><math><mrow><mi>n</mi><mi>R</mi><mi>M</mi><mi>S</mi><mi>E</mi></mrow></math></span>) for fleet-wide, zone-specific, and site-specific predictions are 0.148, 0.141, and 0.137, respectively. The Correlation Coefficient (<span><math><mrow><mi>R</mi></mrow></math></span>) is above 80% for all prediction scales, with the accuracy constrained by the model's difficulty in adapting to abrupt weather changes, leading to overestimation. The model performs best when weather patterns and PV generation are consistent with previous days. This demonstrates that adapting models to the characteristics of each scale significantly improves forecast accuracy, enabling more effective macro-level planning and micro-level operational decisions.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"23 ","pages":"Article 100831"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824001113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a hierarchical forecasting approach for day-ahead energy production in distributed solar Photovoltaic (PV) systems using a tiered Nonlinear Autoregressive Exogenous (NARX) model. The methodology was applied to 52 PV systems installed at The University of Jordan, covering three prediction scales: fleet-wide, zone-specific, and site-specific. The model incorporated weather data, including solar irradiation, temperature, and humidity, to forecast the next day's energy production. Based on a new metric called the OverallMetric, fleet-wide predictions outperform the zone-specific and site-specific averages by 3.21% and 5.35%, respectively. Normalized Root Mean Square Errors (nRMSE) for fleet-wide, zone-specific, and site-specific predictions are 0.148, 0.141, and 0.137, respectively. The Correlation Coefficient (R) is above 80% for all prediction scales, with the accuracy constrained by the model's difficulty in adapting to abrupt weather changes, leading to overestimation. The model performs best when weather patterns and PV generation are consistent with previous days. This demonstrates that adapting models to the characteristics of each scale significantly improves forecast accuracy, enabling more effective macro-level planning and micro-level operational decisions.

Abstract Image

用于预测分布式太阳能光伏系统日前发电量的分层 NARX 模型
本研究采用分层非线性自回归外生(NARX)模型,对分布式太阳能光伏(PV)系统的日前发电量进行分层预测。该方法适用于约旦大学安装的 52 个光伏系统,涵盖三个预测尺度:整个机组、特定区域和特定地点。该模型纳入了天气数据,包括太阳辐照度、温度和湿度,以预测第二天的发电量。根据名为 "OverallMetric "的新指标,整个车队的预测结果比特定区域和特定地点的平均值分别高出 3.21% 和 5.35%。整个机群、特定区域和特定地点预测的归一化均方根误差(nRMSE)分别为 0.148、0.141 和 0.137。所有预测尺度的相关系数(R)均在 80% 以上,但由于模型难以适应天气的突然变化,导致高估,因此精度受到限制。当天气模式和光伏发电量与前几天一致时,模型的表现最佳。这表明,根据各尺度的特点调整模型可显著提高预测精度,从而实现更有效的宏观规划和微观运营决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信