Regularity results for mixed local and nonlocal double phase functionals

IF 2.4 2区 数学 Q1 MATHEMATICS
Sun-Sig Byun , Ho-Sik Lee , Kyeong Song
{"title":"Regularity results for mixed local and nonlocal double phase functionals","authors":"Sun-Sig Byun ,&nbsp;Ho-Sik Lee ,&nbsp;Kyeong Song","doi":"10.1016/j.jde.2024.10.028","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the De Giorgi-Nash-Moser theory for minimizers of mixed local and nonlocal functionals modeled after<span><span><span><math><mi>v</mi><mo>↦</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></munder><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></munder><mfrac><mrow><mo>|</mo><mi>v</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mi>v</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi><mo>+</mo><mi>s</mi><mi>p</mi></mrow></msup></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mi>d</mi><mi>y</mi><mo>+</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> where <span><math><mn>0</mn><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span> and <span><math><mi>a</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>≥</mo><mn>0</mn></math></span>. In particular, we prove Hölder regularity and Harnack inequality under possibly sharp assumptions on <span><math><mi>s</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> and <span><math><mi>a</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1528-1563"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006843","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the De Giorgi-Nash-Moser theory for minimizers of mixed local and nonlocal functionals modeled aftervRnRn|v(x)v(y)|p|xy|n+spdxdy+Ωa(x)|Dv|qdx, where 0<s<1<pq and a()0. In particular, we prove Hölder regularity and Harnack inequality under possibly sharp assumptions on s,p,q and a().
混合局部和非局部双相函数的正则性结果
我们研究了建模在v↦∫Rn∫Rn|v(x)-v(y)|p|x-y|n+spdxdy+∫Ωa(x)|Dv|qdx之后的局部和非局部混合函数最小化的德乔治-纳什-莫泽理论,其中0<s<1<p≤q和a(⋅)≥0。我们特别证明了在对 s、p、q 和 a(⋅) 可能有尖锐假设的情况下的荷尔德正则性和哈纳克不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信