Shruthy Seshadrinathan , V.M. Balasubramaniam , Abigail B. Snyder , Robert Dupont , Xiaoguang Wang
{"title":"Utilizing superheated steam to inactivate Enterococcus faecium NRRL B-2354 on various material surfaces used in food and produce industries","authors":"Shruthy Seshadrinathan , V.M. Balasubramaniam , Abigail B. Snyder , Robert Dupont , Xiaoguang Wang","doi":"10.1016/j.foodcont.2024.110987","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional sanitation in dry food and produce manufacturing plants is challenging as residual moisture can harbor microbial contamination. Superheated steam (SHS) is produced when water is heated to temperatures (125–400 °C) beyond the boiling point. SHS does not lead to condensation on surfaces. There are limited studies available on the sanitation efficacy of SHS on different surfaces. This study was conducted to understand the sanitation efficacy of SHS to inactivate <em>Enterococcus faecium</em> NRRL B-2354 on different surfaces (stainless steel, concrete, plywood, leather, polytetrafluoroethylene (PTFE), silicon rubber, cotton, and cardboard). The surfaces were either spot inoculated or coated with a representative food matrix (baby formula) and treated with SHS at 150 °C for a total process time (come-up time + treatment time) of 3 min. Spot-inoculated surfaces showed a higher microbial inactivation (range: 9.2 ± 0.9 to 10.7 ± 0.7 log reduction/coupon) whereas surfaces with inoculum coated with baby formula had lower microbial inactivation (range: 7.8 ± 0.4 to 9.6 ± 0.4 log reduction/coupon). The effects of surface characteristics like thermal inertia, surface roughness, and hydrophobicity of microbial inactivation were studied. Prolonged usage of SHS (150 °C for 5 min once a week over 8 weeks) did not alter surface characteristics, particularly roughness of stainless steel, silicone rubber and plywood.</div></div>","PeriodicalId":319,"journal":{"name":"Food Control","volume":"169 ","pages":"Article 110987"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Control","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956713524007047","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional sanitation in dry food and produce manufacturing plants is challenging as residual moisture can harbor microbial contamination. Superheated steam (SHS) is produced when water is heated to temperatures (125–400 °C) beyond the boiling point. SHS does not lead to condensation on surfaces. There are limited studies available on the sanitation efficacy of SHS on different surfaces. This study was conducted to understand the sanitation efficacy of SHS to inactivate Enterococcus faecium NRRL B-2354 on different surfaces (stainless steel, concrete, plywood, leather, polytetrafluoroethylene (PTFE), silicon rubber, cotton, and cardboard). The surfaces were either spot inoculated or coated with a representative food matrix (baby formula) and treated with SHS at 150 °C for a total process time (come-up time + treatment time) of 3 min. Spot-inoculated surfaces showed a higher microbial inactivation (range: 9.2 ± 0.9 to 10.7 ± 0.7 log reduction/coupon) whereas surfaces with inoculum coated with baby formula had lower microbial inactivation (range: 7.8 ± 0.4 to 9.6 ± 0.4 log reduction/coupon). The effects of surface characteristics like thermal inertia, surface roughness, and hydrophobicity of microbial inactivation were studied. Prolonged usage of SHS (150 °C for 5 min once a week over 8 weeks) did not alter surface characteristics, particularly roughness of stainless steel, silicone rubber and plywood.
期刊介绍:
Food Control is an international journal that provides essential information for those involved in food safety and process control.
Food Control covers the below areas that relate to food process control or to food safety of human foods:
• Microbial food safety and antimicrobial systems
• Mycotoxins
• Hazard analysis, HACCP and food safety objectives
• Risk assessment, including microbial and chemical hazards
• Quality assurance
• Good manufacturing practices
• Food process systems design and control
• Food Packaging technology and materials in contact with foods
• Rapid methods of analysis and detection, including sensor technology
• Codes of practice, legislation and international harmonization
• Consumer issues
• Education, training and research needs.
The scope of Food Control is comprehensive and includes original research papers, authoritative reviews, short communications, comment articles that report on new developments in food control, and position papers.