On the number of Fk,4-saturating edges

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuying Li, Kexiang Xu
{"title":"On the number of Fk,4-saturating edges","authors":"Yuying Li,&nbsp;Kexiang Xu","doi":"10.1016/j.amc.2024.129162","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>F</em>, let <em>G</em> be an <em>F</em>-free graph, a non-edge <em>e</em> of <em>G</em> is an <em>F</em>-saturating edge if <span><math><mi>G</mi><mo>+</mo><mi>e</mi></math></span> contains a copy of <em>F</em>. Graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>r</mi></mrow></msub></math></span> consists of <em>k</em> cliques <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> intersecting in exactly one common vertex. Denote by <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> the minimum number of <em>F</em>-saturating edges of <em>F</em>-free graphs on <em>n</em> vertices with <em>m</em> edges and <span><math><msubsup><mrow><mi>f</mi></mrow><mrow><mi>F</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>, where <span><math><mi>m</mi><mo>≤</mo><mi>e</mi><mi>x</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, the minimum number of <em>F</em>-saturating edges of <em>F</em>-free graphs on <em>n</em> vertices with <em>m</em> edges obtained by deleting edges from the extremal graph attaining <span><math><mi>e</mi><mi>x</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. In this paper, we study the number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>4</mn></mrow></msub></math></span>-saturating edges in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>4</mn></mrow></msub></math></span>-free graphs on <em>n</em> vertices with <span><math><mi>e</mi><mi>x</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn></math></span> edges. We give the upper bounds on <span><math><msub><mrow><mi>f</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>4</mn></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>e</mi><mi>x</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn><mo>)</mo></math></span> and get the value of <span><math><msub><mrow><mi>f</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>e</mi><mi>x</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn><mo>)</mo></math></span>. Moreover, we characterize the extremal graphs attaining <span><math><mi>e</mi><mi>x</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>4</mn></mrow></msub></math></span>) with odd <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and prove <span><math><msubsup><mrow><mi>f</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>,</mo><mn>4</mn></mrow></msub></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>n</mi><mo>,</mo><mi>e</mi><mi>x</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>)</mo><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌋</mo><mo>−</mo><mi>k</mi></math></span> for odd <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006234","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph F, let G be an F-free graph, a non-edge e of G is an F-saturating edge if G+e contains a copy of F. Graph Fk,r consists of k cliques Kr intersecting in exactly one common vertex. Denote by fF(n,m) the minimum number of F-saturating edges of F-free graphs on n vertices with m edges and fF(n,m), where mex(n,F), the minimum number of F-saturating edges of F-free graphs on n vertices with m edges obtained by deleting edges from the extremal graph attaining ex(n,F). In this paper, we study the number of Fk,4-saturating edges in Fk,4-free graphs on n vertices with ex(n,Fk1,4)+1 edges. We give the upper bounds on fFk,4(n,ex(n,Fk1,4)+1) and get the value of fF2,4(n,ex(n,F1,4)+1). Moreover, we characterize the extremal graphs attaining ex(n,Fk,4) with odd k3 and prove fFk,4(n,ex(n,Fk1,4)+1)=n3k for odd k3.
关于 Fk,4 饱和边的数量
对于一个图 F,让 G 是一个无 F 图,如果 G+e 包含一个 F 的副本,则 G 的非边 e 是一条 F 饱和边。用 fF(n,m)表示 n 个顶点上有 m 条边的无 F 图形的最小 F 饱和边数,用 fF⁎(n,m)表示 n 个顶点上有 m 条边的无 F 图形的最小 F 饱和边数,其中 m≤ex(n,F) 是通过从达到 ex(n,F) 的极值图形中删除边得到的。本文研究了 n 个顶点上具有 ex(n,Fk-1,4)+1 边的无 Fk,4 图中的 Fk,4 饱和边数。我们给出了 fFk,4(n,ex(n,Fk-1,4)+1) 的上界,并得到了 fF2,4(n,ex(n,F1,4)+1) 的值。此外,我们还描述了奇数 k≥3 时达到 ex(n,Fk,4) 的极值图的特征,并证明了奇数 k≥3 时 fFk,4⁎(n,ex(n,Fk-1,4)+1)=⌊n3⌋-k 的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信