A shooting-Newton procedure for solving fractional terminal value problems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Luigi Brugnano , Gianmarco Gurioli , Felice Iavernaro
{"title":"A shooting-Newton procedure for solving fractional terminal value problems","authors":"Luigi Brugnano ,&nbsp;Gianmarco Gurioli ,&nbsp;Felice Iavernaro","doi":"10.1016/j.amc.2024.129164","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider the numerical solution of <em>fractional terminal value problems</em>: namely, <em>terminal value problems for fractional differential equations</em>. In particular, the proposed method uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving <em>fractional initial value problems</em>, i.e., <em>initial value problems for fractional differential equations</em>. As a result, the method is able to produce spectrally accurate solutions of fractional terminal value problems. Some numerical tests are reported to make evidence of its effectiveness.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006258","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the numerical solution of fractional terminal value problems: namely, terminal value problems for fractional differential equations. In particular, the proposed method uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving fractional initial value problems, i.e., initial value problems for fractional differential equations. As a result, the method is able to produce spectrally accurate solutions of fractional terminal value problems. Some numerical tests are reported to make evidence of its effectiveness.
求解分数终值问题的牛顿程序
在本文中,我们考虑了分数终值问题的数值解法:即分数微分方程的终值问题。特别是,本文提出的方法采用牛顿迭代法,该方法与最近引入的分步求解分数初值问题(即分数微分方程的初值问题)的程序相结合,效率特别高。因此,该方法能够产生分数终值问题的光谱精确解。报告中的一些数值测试证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信