Juan Pablo Aguilera , Martín Diéguez , David Fernández-Duque , Brett McLean
{"title":"Gödel–Dummett linear temporal logic","authors":"Juan Pablo Aguilera , Martín Diéguez , David Fernández-Duque , Brett McLean","doi":"10.1016/j.artint.2024.104236","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate a version of linear temporal logic whose propositional fragment is Gödel–Dummett logic (which is well known both as a superintuitionistic logic and a t-norm fuzzy logic). We define the logic using two natural semantics: first a real-valued semantics, where statements have a degree of truth in the real unit interval, and second a ‘bi-relational’ semantics. We then show that these two semantics indeed define one and the same logic: the statements that are valid for the real-valued semantics are the same as those that are valid for the bi-relational semantics. This Gödel temporal logic does not have any form of the finite model property for these two semantics: there are non-valid statements that can only be falsified on an infinite model. However, by using the technical notion of a quasimodel, we show that every falsifiable statement is falsifiable on a finite quasimodel, yielding an algorithm for deciding if a statement is valid or not. Later, we strengthen this decidability result by giving an algorithm that uses only a polynomial amount of memory, proving that Gödel temporal logic is PSPACE-complete. We also provide a deductive calculus for Gödel temporal logic, and show this calculus to be sound and complete for the above-mentioned semantics, so that all (and only) the valid statements can be proved with this calculus.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"338 ","pages":"Article 104236"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001723","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a version of linear temporal logic whose propositional fragment is Gödel–Dummett logic (which is well known both as a superintuitionistic logic and a t-norm fuzzy logic). We define the logic using two natural semantics: first a real-valued semantics, where statements have a degree of truth in the real unit interval, and second a ‘bi-relational’ semantics. We then show that these two semantics indeed define one and the same logic: the statements that are valid for the real-valued semantics are the same as those that are valid for the bi-relational semantics. This Gödel temporal logic does not have any form of the finite model property for these two semantics: there are non-valid statements that can only be falsified on an infinite model. However, by using the technical notion of a quasimodel, we show that every falsifiable statement is falsifiable on a finite quasimodel, yielding an algorithm for deciding if a statement is valid or not. Later, we strengthen this decidability result by giving an algorithm that uses only a polynomial amount of memory, proving that Gödel temporal logic is PSPACE-complete. We also provide a deductive calculus for Gödel temporal logic, and show this calculus to be sound and complete for the above-mentioned semantics, so that all (and only) the valid statements can be proved with this calculus.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.