Extension criterion involving the middle eigenvalue of the strain tensor on local strong solutions to the 3D Navier–Stokes equations

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Zhengguang Guo , Chol-Jun O
{"title":"Extension criterion involving the middle eigenvalue of the strain tensor on local strong solutions to the 3D Navier–Stokes equations","authors":"Zhengguang Guo ,&nbsp;Chol-Jun O","doi":"10.1016/j.aml.2024.109354","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we prove an extension criterion for a local strong solution to the 3D Navier–Stokes equations that only require control of the positive part of middle eigenvalue of strain tensor in the critical endpoint Besov space, i.e., <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>∞</mi><mo>,</mo><mi>∞</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>. This gives a positive answer to the problem proposed by Miller <span><span>[1]</span></span> and improves the results by Wu <span><span>[2]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>. The proof relies on the identity for enstrophy growth and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm estimate of the gradient of <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003744","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we prove an extension criterion for a local strong solution to the 3D Navier–Stokes equations that only require control of the positive part of middle eigenvalue of strain tensor in the critical endpoint Besov space, i.e., λ2+L2(0,T;Ḃ,1). This gives a positive answer to the problem proposed by Miller [1] and improves the results by Wu [2], [3], [4]. The proof relies on the identity for enstrophy growth and Lp-norm estimate of the gradient of λ2+.
涉及三维纳维-斯托克斯方程局部强解的应变张量中间特征值的扩展准则
本文证明了三维纳维-斯托克斯方程局部强解的扩展准则,只需控制临界端点贝索夫空间中应变张量中间特征值的正部分,即λ2+∈L2(0,T;Ḃ∞,∞-1)。这给出了米勒[1]提出的问题的正面答案,并改进了吴[2]、[3]、[4]的结果。证明依赖于熵增长的特性和 λ2+ 梯度的 Lp 正估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信