Enhancement of sodium ion conductivity in phosphate-based glass-ceramics by chemical substitution approach

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
I. Chaiboub , H. Bih , H. Zaitouni , A. Lahmar , K. Hoummada , M. Naji , B. Manoun , A. El Bouari , P. Lazor , M.P.F. Graça , L. Bih
{"title":"Enhancement of sodium ion conductivity in phosphate-based glass-ceramics by chemical substitution approach","authors":"I. Chaiboub ,&nbsp;H. Bih ,&nbsp;H. Zaitouni ,&nbsp;A. Lahmar ,&nbsp;K. Hoummada ,&nbsp;M. Naji ,&nbsp;B. Manoun ,&nbsp;A. El Bouari ,&nbsp;P. Lazor ,&nbsp;M.P.F. Graça ,&nbsp;L. Bih","doi":"10.1016/j.jpcs.2024.112415","DOIUrl":null,"url":null,"abstract":"<div><div>A NASICON-type sodium-ion conducting material was synthesized via the glass-ceramic route by investigating the zinc doped Na<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–TiO<sub>2</sub>–P<sub>2</sub>O<sub>5</sub> system. The glasses and glass-ceramics corresponding to the formula Na<sub>2+x</sub>Al<sub>1-x</sub>Zn<sub>x</sub>Ti(PO<sub>4</sub>)<sub>3</sub> (x = 0, 0.2, 0.4, 0.6, 0.8, 1), labeled as (NAZTP-G<sub>x</sub>) and (NAZTP-GC<sub>x</sub>) respectively, were characterized using different techniques. Differential Scanning Calorimetry (DSC) measurements were carried out to identify the characteristic temperatures, the glass transition (T<sub>g</sub>) and the crystallization temperature (T<sub>c</sub>). X-ray Diffraction (XRD) analysis of the glass-ceramics confirmed the formation of a solid solution Na<sub>2+x</sub>Al<sub>1-x</sub>Zn<sub>x</sub>Ti(PO<sub>4</sub>)<sub>3</sub> NASICON phase, Theoretical calculations employing the Perdew–Burke–Ernzerhoff generalized gradients approximation (PBE-GGA) model supported the potential substitution of aluminum by zinc in the octahedral site in the NASICON-phase. Further structural insights were obtained through Infrared (IR) and Raman spectroscopies. Scanning electron microscopy (SEM) analysis revealed a distinct flower-like shape of the formed crystallites in the glass-ceramic NAZTP-GC<sub>0.2</sub>. Electrical characterization using electrochemical impedance spectroscopy (EIS) demonstrated that the NAZTP-GC<sub>0.2</sub> sample exhibited the highest ionic conductivity at 300 °C, reaching 4.1 × 10<sup>−5</sup> (Ω<sup>−1</sup> cm<sup>−1</sup>) with an activation energy of 0.25 eV. The DC polarization was performed on the NAZTP-GC<sub>0.2</sub> glass-ceramic, revealing that the ions are the main charge carriers in the sample. This comprehensive analysis provides valuable insights into the partial zinc doping of NASICON glass-ceramics, offering potential for improved performance as solid electrolytes in various applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112415"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002236972400550X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A NASICON-type sodium-ion conducting material was synthesized via the glass-ceramic route by investigating the zinc doped Na2O–Al2O3–TiO2–P2O5 system. The glasses and glass-ceramics corresponding to the formula Na2+xAl1-xZnxTi(PO4)3 (x = 0, 0.2, 0.4, 0.6, 0.8, 1), labeled as (NAZTP-Gx) and (NAZTP-GCx) respectively, were characterized using different techniques. Differential Scanning Calorimetry (DSC) measurements were carried out to identify the characteristic temperatures, the glass transition (Tg) and the crystallization temperature (Tc). X-ray Diffraction (XRD) analysis of the glass-ceramics confirmed the formation of a solid solution Na2+xAl1-xZnxTi(PO4)3 NASICON phase, Theoretical calculations employing the Perdew–Burke–Ernzerhoff generalized gradients approximation (PBE-GGA) model supported the potential substitution of aluminum by zinc in the octahedral site in the NASICON-phase. Further structural insights were obtained through Infrared (IR) and Raman spectroscopies. Scanning electron microscopy (SEM) analysis revealed a distinct flower-like shape of the formed crystallites in the glass-ceramic NAZTP-GC0.2. Electrical characterization using electrochemical impedance spectroscopy (EIS) demonstrated that the NAZTP-GC0.2 sample exhibited the highest ionic conductivity at 300 °C, reaching 4.1 × 10−5−1 cm−1) with an activation energy of 0.25 eV. The DC polarization was performed on the NAZTP-GC0.2 glass-ceramic, revealing that the ions are the main charge carriers in the sample. This comprehensive analysis provides valuable insights into the partial zinc doping of NASICON glass-ceramics, offering potential for improved performance as solid electrolytes in various applications.
通过化学替代方法增强磷酸盐基玻璃陶瓷的钠离子传导性
通过研究掺锌的 Na2O-Al2O3-TiO2-P2O5 体系,采用玻璃-陶瓷路线合成了 NASICON 型钠离子导电材料。使用不同的技术对对应于 Na2+xAl1-xZnxTi(PO4)3 公式(x = 0、0.2、0.4、0.6、0.8、1)的玻璃和玻璃陶瓷进行了表征,分别标记为 (NAZTP-Gx) 和 (NAZTP-GCx)。差示扫描量热法(DSC)测量确定了特征温度、玻璃化转变温度(Tg)和结晶温度(Tc)。玻璃陶瓷的 X 射线衍射(XRD)分析证实了 Na2+xAl1-xZnxTi(PO4)3 NASICON 固溶相的形成,采用 Perdew-Burke-Ernzerhoff 广义梯度近似(PBE-GGA)模型进行的理论计算支持在 NASICON 相的八面体位点中可能存在锌取代铝的现象。红外光谱和拉曼光谱进一步揭示了该化合物的结构。扫描电子显微镜(SEM)分析表明,在玻璃陶瓷 NAZTP-GC0.2 中形成的晶体具有明显的花朵状形状。利用电化学阻抗光谱(EIS)进行的电学表征表明,NAZTP-GC0.2 样品在 300 °C 时的离子电导率最高,达到 4.1 × 10-5 (Ω-1 cm-1),活化能为 0.25 eV。对 NAZTP-GC0.2 玻璃陶瓷进行的直流极化显示,离子是样品中的主要电荷载体。这项综合分析为了解 NASICON 玻璃陶瓷中的部分锌掺杂提供了宝贵的信息,为提高其在各种应用中作为固体电解质的性能提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信