Min Lv, Xiangxiang Zhang, Bei Li, Baibiao Huang and Zhaoke Zheng*,
{"title":"Single-Particle Fluorescence Spectroscopy for Elucidating Charge Transfer and Catalytic Mechanisms on Nanophotocatalysts","authors":"Min Lv, Xiangxiang Zhang, Bei Li, Baibiao Huang and Zhaoke Zheng*, ","doi":"10.1021/acsnano.4c1070210.1021/acsnano.4c10702","DOIUrl":null,"url":null,"abstract":"<p >Photocatalysis is a cost-effective approach to producing renewable energy. A thorough comprehension of carrier separation at the micronano level is crucial for enhancing the photochemical conversion capabilities of photocatalysts. However, the heterogeneity of photocatalyst nanoparticles and complex charge migration processes limit the profound understanding of photocatalytic reaction mechanisms. By establishing the precise interrelationship between microscopic properties and photophysical behaviors of photocatalysts, single-particle fluorescence spectroscopy can elucidate the carrier separation and catalytic mechanism of the photocatalysts in situ, which provides perspectives for improving the photocatalytic efficiency. This Review primarily focuses on the basic principles and advantages of single-particle fluorescence spectroscopy and its progress in the study of plasmonic and semiconductor photocatalysis, especially emphasizing its importance in understanding the charge separation and photocatalytic reaction mechanism, which offers scientific guidance for designing efficient photocatalytic systems. Finally, we summarize and forecast the future development prospects of single-particle fluorescence spectroscopy technology, especially the insights into its technological upgrading.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 44","pages":"30247–30268 30247–30268"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c10702","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalysis is a cost-effective approach to producing renewable energy. A thorough comprehension of carrier separation at the micronano level is crucial for enhancing the photochemical conversion capabilities of photocatalysts. However, the heterogeneity of photocatalyst nanoparticles and complex charge migration processes limit the profound understanding of photocatalytic reaction mechanisms. By establishing the precise interrelationship between microscopic properties and photophysical behaviors of photocatalysts, single-particle fluorescence spectroscopy can elucidate the carrier separation and catalytic mechanism of the photocatalysts in situ, which provides perspectives for improving the photocatalytic efficiency. This Review primarily focuses on the basic principles and advantages of single-particle fluorescence spectroscopy and its progress in the study of plasmonic and semiconductor photocatalysis, especially emphasizing its importance in understanding the charge separation and photocatalytic reaction mechanism, which offers scientific guidance for designing efficient photocatalytic systems. Finally, we summarize and forecast the future development prospects of single-particle fluorescence spectroscopy technology, especially the insights into its technological upgrading.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.