Ultralow-Power Circuit and Sensing Applications Based on Subthermionic Threshold Switching Transistors

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Anupom Devnath, Junseong Bae, Batyrbek Alimkhanuly, Gisung Lee, Seunghyun Lee, Arman Kadyrov, Shubham Patil and Dr Seunghyun Lee*, 
{"title":"Ultralow-Power Circuit and Sensing Applications Based on Subthermionic Threshold Switching Transistors","authors":"Anupom Devnath,&nbsp;Junseong Bae,&nbsp;Batyrbek Alimkhanuly,&nbsp;Gisung Lee,&nbsp;Seunghyun Lee,&nbsp;Arman Kadyrov,&nbsp;Shubham Patil and Dr Seunghyun Lee*,&nbsp;","doi":"10.1021/acsnano.4c0865010.1021/acsnano.4c08650","DOIUrl":null,"url":null,"abstract":"<p >The most recent breakthrough in state-of-the-art electronics and optoelectronics involves the adoption of steep-slope field-effect transistors (FETs), promoting sub-60 mV/dec subthreshold swing (SS) at ambient temperature, effectively overcoming “Boltzmann limit” to minimize power consumption. Here, a series integration of nanoscale copper-based resistive-filamentary threshold switch (TS) with the IGZO channel-based FET is used to develop a TS-FET, in which the turn-on characteristics exhibit an abrupt transition over five decades, with an extremely low SS of 7 mV/dec, a high on/off ratio (&gt;10<sup>9</sup>), and ultralow leakage current (40-fold decrease), ensuring excellent repeatability and device yield. Unlike previous device-centric studies, this work highlights potential circuit applications (logic-inverter, pulse-sensor amplification, and photodetector) based on TS-FET. The sharp transition behavior of TS-FET enables the establishment of logic inverters with a high voltage gain of ≈800, with a circuit-level demonstration achieving a bias-independent record-high intrinsic gain (&gt;1000). A wearable pulse sensor integrated with an amplifier circuit ensured the precise amplification of electrophysical signals by 450 times. In addition, the application of a TS-FET-based photodetector features high responsivity (1.08 × 10<sup>4</sup> mA/W) and detectivity (1.03 × 10<sup>20</sup> Jones). The low-power strategy of TS-FETs is promising for the development of energy-efficient integrated circuits alongside sensor-interconnected biomedical applications in wearable technology.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 44","pages":"30497–30511 30497–30511"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c08650","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The most recent breakthrough in state-of-the-art electronics and optoelectronics involves the adoption of steep-slope field-effect transistors (FETs), promoting sub-60 mV/dec subthreshold swing (SS) at ambient temperature, effectively overcoming “Boltzmann limit” to minimize power consumption. Here, a series integration of nanoscale copper-based resistive-filamentary threshold switch (TS) with the IGZO channel-based FET is used to develop a TS-FET, in which the turn-on characteristics exhibit an abrupt transition over five decades, with an extremely low SS of 7 mV/dec, a high on/off ratio (>109), and ultralow leakage current (40-fold decrease), ensuring excellent repeatability and device yield. Unlike previous device-centric studies, this work highlights potential circuit applications (logic-inverter, pulse-sensor amplification, and photodetector) based on TS-FET. The sharp transition behavior of TS-FET enables the establishment of logic inverters with a high voltage gain of ≈800, with a circuit-level demonstration achieving a bias-independent record-high intrinsic gain (>1000). A wearable pulse sensor integrated with an amplifier circuit ensured the precise amplification of electrophysical signals by 450 times. In addition, the application of a TS-FET-based photodetector features high responsivity (1.08 × 104 mA/W) and detectivity (1.03 × 1020 Jones). The low-power strategy of TS-FETs is promising for the development of energy-efficient integrated circuits alongside sensor-interconnected biomedical applications in wearable technology.

Abstract Image

基于亚热态阈值开关晶体管的超低功耗电路和传感应用
最先进的电子和光电子技术的最新突破涉及采用陡坡场效应晶体管 (FET),在环境温度下促进低于 60 mV/dec 的亚阈值摆幅 (SS),有效克服 "玻尔兹曼极限",从而最大限度地降低功耗。在这里,我们利用纳米级铜基电阻丝阈值开关(TS)与基于 IGZO 沟道的场效应晶体管的串联集成,开发出一种 TS-FET ,其导通特性在五十年内呈现出突然的转变,具有 7 mV/dec 的超低 SS、高导通/关断比(>109)和超低漏电流(降低 40 倍),确保了出色的可重复性和器件良率。与以往以器件为中心的研究不同,这项工作强调了基于 TS-FET 的潜在电路应用(逻辑转换器、脉冲传感器放大和光电探测器)。TS-FET 的尖锐过渡行为使得逻辑反相器的电压增益高达 ≈800,电路级演示实现了与偏置无关的创纪录高本征增益(>1000)。与放大电路集成的可穿戴式脉搏传感器可确保将电物理信号精确放大 450 倍。此外,基于 TS-FET 的光电探测器具有高响应率(1.08 × 104 mA/W)和检测率(1.03 × 1020 Jones)。TS-FET 的低功耗策略对于开发可穿戴技术中传感器互连生物医学应用的高能效集成电路大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信