Cascade contour-enhanced panoptic segmentation for robotic vision perception.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1489021
Yue Xu, Runze Liu, Dongchen Zhu, Lili Chen, Xiaolin Zhang, Jiamao Li
{"title":"Cascade contour-enhanced panoptic segmentation for robotic vision perception.","authors":"Yue Xu, Runze Liu, Dongchen Zhu, Lili Chen, Xiaolin Zhang, Jiamao Li","doi":"10.3389/fnbot.2024.1489021","DOIUrl":null,"url":null,"abstract":"<p><p>Panoptic segmentation plays a crucial role in enabling robots to comprehend their surroundings, providing fine-grained scene understanding information for robots' intelligent tasks. Although existing methods have made some progress, they are prone to fail in areas with weak textures, small objects, etc. Inspired by biological vision research, we propose a cascaded contour-enhanced panoptic segmentation network called CCPSNet, attempting to enhance the discriminability of instances through structural knowledge. To acquire the scene structure, a cascade contour detection stream is designed, which extracts comprehensive scene contours using channel regulation structural perception module and coarse-to-fine cascade strategy. Furthermore, the contour-guided multi-scale feature enhancement stream is developed to boost the discrimination ability for small objects and weak textures. The stream integrates contour information and multi-scale context features through structural-aware feature modulation module and inverse aggregation technique. Experimental results show that our method improves accuracy on the Cityscapes (61.2 PQ) and COCO (43.5 PQ) datasets while also demonstrating robustness in challenging simulated real-world complex scenarios faced by robots, such as dirty cameras and rainy conditions. The proposed network promises to help the robot perceive the real scene. In future work, an unsupervised training strategy for the network could be explored to reduce the training cost.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1489021","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Panoptic segmentation plays a crucial role in enabling robots to comprehend their surroundings, providing fine-grained scene understanding information for robots' intelligent tasks. Although existing methods have made some progress, they are prone to fail in areas with weak textures, small objects, etc. Inspired by biological vision research, we propose a cascaded contour-enhanced panoptic segmentation network called CCPSNet, attempting to enhance the discriminability of instances through structural knowledge. To acquire the scene structure, a cascade contour detection stream is designed, which extracts comprehensive scene contours using channel regulation structural perception module and coarse-to-fine cascade strategy. Furthermore, the contour-guided multi-scale feature enhancement stream is developed to boost the discrimination ability for small objects and weak textures. The stream integrates contour information and multi-scale context features through structural-aware feature modulation module and inverse aggregation technique. Experimental results show that our method improves accuracy on the Cityscapes (61.2 PQ) and COCO (43.5 PQ) datasets while also demonstrating robustness in challenging simulated real-world complex scenarios faced by robots, such as dirty cameras and rainy conditions. The proposed network promises to help the robot perceive the real scene. In future work, an unsupervised training strategy for the network could be explored to reduce the training cost.

用于机器人视觉感知的级联轮廓增强全景分割。
全景分割在帮助机器人理解周围环境方面发挥着至关重要的作用,它为机器人的智能任务提供了精细的场景理解信息。虽然现有的方法已经取得了一些进展,但在纹理较弱、物体较小等区域容易失效。受生物视觉研究的启发,我们提出了一种级联轮廓增强全景分割网络(CCPSNet),试图通过结构知识增强实例的可辨别性。为了获取场景结构,我们设计了一个级联轮廓检测流,利用通道调节结构感知模块和从粗到细的级联策略提取全面的场景轮廓。此外,还开发了轮廓引导的多尺度特征增强流,以提高对小物体和弱纹理的辨别能力。该信息流通过结构感知特征调制模块和反向聚合技术整合了轮廓信息和多尺度背景特征。实验结果表明,我们的方法在城市景观(61.2 PQ)和 COCO(43.5 PQ)数据集上提高了准确性,同时在机器人面临的具有挑战性的模拟真实世界复杂场景(如肮脏的摄像头和雨天环境)中也表现出了鲁棒性。拟议的网络有望帮助机器人感知真实场景。在未来的工作中,可以探索网络的无监督训练策略,以降低训练成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信