In vitro skin permeation of flavonoid esters enzymatically derived from natural oils: release mechanism from gel emulsion, stability, and dermatological compatibility.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Ana Milivojević, Marija Ćorović, Anja Petrov Ivanković, Milica Simović, Katarina Banjanac, Rada Pjanović, Dejan Bezbradica
{"title":"<i>In vitro</i> skin permeation of flavonoid esters enzymatically derived from natural oils: release mechanism from gel emulsion, stability, and dermatological compatibility.","authors":"Ana Milivojević, Marija Ćorović, Anja Petrov Ivanković, Milica Simović, Katarina Banjanac, Rada Pjanović, Dejan Bezbradica","doi":"10.1080/10837450.2024.2424977","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their broad spectrum of biological activities and attractive pharmacological properties, flavonoids are very promising molecules for application in skin care products. In this study, phloridzin and naringin medium- and long-chain fatty acid esters were enzymatically synthesized in reaction with natural oils (coconut and linseed oil) and <i>in vitro</i> transdermal delivery of synthesized esters through artificial Strat-M<sup>®</sup> membrane was investigated. Experimental results were succesfully fitted using Peppas and Sahlin model which includes the <i>lag</i> phase. Release kinetics of all examined flavonoid esters from gel emulsions through the membrane depended on both diffusion and polymer relaxation effect (0.5<<i>n</i> < 1). The estimated effective diffusion coefficients ranged from 0.168·10<sup>-8</sup> to 6.149·10<sup>-8</sup> cm<sup>2</sup> s<sup>-1</sup> for phloridzin esters and from 0.116·10<sup>-8</sup> to 4.210·10<sup>-8</sup> cm<sup>2</sup> s<sup>-1</sup> for naringin esters. The effective diffusion coefficients decreased with the increase in ester molecular weight indicating the size-dependent diffusion. All formulation showed good stability, excellent hydration effect, and excellent dermatological compatibility without irritating effect. It can be concluded that gel emulsions with a mixture of flavonoid esters enzymatically synthesized in reaction with vegetable oils can be effectively topically applied as a skin care products.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1121-1132"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2424977","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their broad spectrum of biological activities and attractive pharmacological properties, flavonoids are very promising molecules for application in skin care products. In this study, phloridzin and naringin medium- and long-chain fatty acid esters were enzymatically synthesized in reaction with natural oils (coconut and linseed oil) and in vitro transdermal delivery of synthesized esters through artificial Strat-M® membrane was investigated. Experimental results were succesfully fitted using Peppas and Sahlin model which includes the lag phase. Release kinetics of all examined flavonoid esters from gel emulsions through the membrane depended on both diffusion and polymer relaxation effect (0.5<n < 1). The estimated effective diffusion coefficients ranged from 0.168·10-8 to 6.149·10-8 cm2 s-1 for phloridzin esters and from 0.116·10-8 to 4.210·10-8 cm2 s-1 for naringin esters. The effective diffusion coefficients decreased with the increase in ester molecular weight indicating the size-dependent diffusion. All formulation showed good stability, excellent hydration effect, and excellent dermatological compatibility without irritating effect. It can be concluded that gel emulsions with a mixture of flavonoid esters enzymatically synthesized in reaction with vegetable oils can be effectively topically applied as a skin care products.

从天然油中酶解提取的类黄酮酯的体外皮肤渗透性:凝胶乳液的释放机制、稳定性和皮肤相容性。
由于黄酮类化合物具有广谱的生物活性和诱人的药理特性,因此是非常有希望应用于护肤品的分子。本研究用天然油脂(椰子油和亚麻籽油)与酶反应合成了氯啶和柚皮苷中长链脂肪酸酯,并研究了合成酯通过人工 Strat-M® 膜进行体外透皮给药的情况。实验结果成功地与 Peppas 和 Sahlin 模型相吻合,其中包括滞后期。所有受试黄酮类酯类从凝胶乳液中通过膜的释放动力学都取决于扩散和聚合物松弛效应(氯嗪酯类为 0.5 -8 至 6.149-10-8 cm2 s-1,柚皮苷酯类为 0.116-10-8 至 4.210-10-8 cm2 s-1)。有效扩散系数随着酯分子量的增加而降低,这表明扩散与分子量有关。所有配方都表现出良好的稳定性、出色的保湿效果和出色的皮肤相容性,且无刺激作用。由此可以得出结论,含有与植物油反应酶解合成的黄酮类酯混合物的凝胶乳液可作为护肤产品有效地局部使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信