Discovery of novel metabolic biomarkers in blood serum for diagnosis of Alzheimer's disease.

IF 3.4 3区 医学 Q2 NEUROSCIENCES
Journal of Alzheimer's Disease Pub Date : 2024-11-01 Epub Date: 2024-10-25 DOI:10.3233/JAD-240280
Yingxin Zhao, Alejandro Villasante-Tezanos, Ernesto G Miranda-Morales, Miguel A Pappolla, Xiang Fang
{"title":"Discovery of novel metabolic biomarkers in blood serum for diagnosis of Alzheimer's disease.","authors":"Yingxin Zhao, Alejandro Villasante-Tezanos, Ernesto G Miranda-Morales, Miguel A Pappolla, Xiang Fang","doi":"10.3233/JAD-240280","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Blood metabolites have emerged as promising candidates in the search for biomarkers for Alzheimer's disease (AD), as evidence shows that various metabolic derangements contribute to neurodegeneration in AD.</p><p><strong>Objective: </strong>We aim to identify metabolic biomarkers for AD diagnosis.</p><p><strong>Methods: </strong>We conducted an in-depth analysis of the serum metabolome of AD patients and age, sex-matched cognitively unimpaired older adults using ultra-high-performance liquid chromatography-high resolution mass spectrometry. The biomarkers associated with AD were identified using machine learning algorithms.</p><p><strong>Results: </strong>Using the discovery dataset and support vector machine (SVM) algorithm, we identified a panel of 14 metabolites predicting AD with a 1.00 area under the curve (AUC) of receiver operating characteristic (ROC). The SVM model was tested against the verification dataset using an independent cohort and retained high predictive accuracy with a 0.97 AUC. Using the random forest (RF) algorithm, we identified a panel of 13 metabolites that predicted AD with a 0.96 AUC when tested against the verification dataset.</p><p><strong>Conclusions: </strong>These findings pave the way for an efficient, blood-based diagnostic test for AD, holding promise for clinical screenings and diagnostic procedures.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":"102 1","pages":"237-253"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/JAD-240280","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Blood metabolites have emerged as promising candidates in the search for biomarkers for Alzheimer's disease (AD), as evidence shows that various metabolic derangements contribute to neurodegeneration in AD.

Objective: We aim to identify metabolic biomarkers for AD diagnosis.

Methods: We conducted an in-depth analysis of the serum metabolome of AD patients and age, sex-matched cognitively unimpaired older adults using ultra-high-performance liquid chromatography-high resolution mass spectrometry. The biomarkers associated with AD were identified using machine learning algorithms.

Results: Using the discovery dataset and support vector machine (SVM) algorithm, we identified a panel of 14 metabolites predicting AD with a 1.00 area under the curve (AUC) of receiver operating characteristic (ROC). The SVM model was tested against the verification dataset using an independent cohort and retained high predictive accuracy with a 0.97 AUC. Using the random forest (RF) algorithm, we identified a panel of 13 metabolites that predicted AD with a 0.96 AUC when tested against the verification dataset.

Conclusions: These findings pave the way for an efficient, blood-based diagnostic test for AD, holding promise for clinical screenings and diagnostic procedures.

发现用于诊断阿尔茨海默病的新型血清代谢生物标记物。
背景:在寻找阿尔茨海默病(AD)生物标志物的过程中,血液代谢物已成为很有希望的候选物,因为有证据表明,各种代谢失调导致了AD的神经变性:我们的目的是找出诊断阿尔茨海默病的代谢生物标志物:我们采用超高效液相色谱-高分辨质谱法对AD患者和年龄、性别匹配的认知功能未受损的老年人的血清代谢组进行了深入分析。利用机器学习算法确定了与AD相关的生物标志物:利用发现数据集和支持向量机(SVM)算法,我们确定了一组 14 种代谢物,其曲线下面积(AUC)为 1.00 的接收器操作特征(ROC),可预测 AD。我们使用独立队列对 SVM 模型的验证数据集进行了测试,结果表明该模型具有很高的预测准确性,AUC 为 0.97。使用随机森林(RF)算法,我们确定了13种代谢物,在与验证数据集进行测试时,这些代谢物预测AD的AUC为0.96:这些发现为基于血液的高效AD诊断测试铺平了道路,为临床筛查和诊断程序带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alzheimer's Disease
Journal of Alzheimer's Disease 医学-神经科学
CiteScore
6.40
自引率
7.50%
发文量
1327
审稿时长
2 months
期刊介绍: The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信