Distinct Strategies Regulate Correlated Ion Channel mRNAs and Ionic Currents in Continually versus Episodically Active Neurons.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2024-11-13 Print Date: 2024-11-01 DOI:10.1523/ENEURO.0320-24.2024
Jose A Viteri, Simone Temporal, David J Schulz
{"title":"Distinct Strategies Regulate Correlated Ion Channel mRNAs and Ionic Currents in Continually versus Episodically Active Neurons.","authors":"Jose A Viteri, Simone Temporal, David J Schulz","doi":"10.1523/ENEURO.0320-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Relationships among membrane currents allow central pattern generator (CPG) neurons to reliably drive motor programs. We hypothesize that continually active CPG neurons utilize activity-dependent feedback to correlate expression of ion channel genes to balance essential membrane currents. However, episodically activated neurons experience absences of activity-dependent feedback and, thus, presumably employ other strategies to coregulate the balance of ionic currents necessary to generate appropriate output after periods of quiescence. To investigate this, we compared continually active pyloric dilator (PD) neurons with episodically active lateral gastric (LG) CPG neurons of the stomatogastric ganglion (STG) in male <i>Cancer borealis</i> crabs. After experimentally activating LG for 8 h, we measured three potassium currents and abundances of their corresponding channel mRNAs. We found that ionic current relationships were correlated in LG's silent state, but ion channel mRNA relationships were correlated in the active state. In continuously active PD neurons, ion channel mRNAs and ionic currents are simultaneously correlated. Therefore, two distinct relationships exist between channel mRNA abundance and the ionic current encoded in these cells: in PD, a direct correlation exists between <i>Shal</i> channel mRNA levels and the A-type potassium current it carries. Conversely, such channel mRNA-current relationships are not detected and appear to be temporally uncoupled in LG neurons. Our results suggest that ongoing feedback maintains membrane current and channel mRNA relationships in continually active PD neurons, while in LG neurons, episodic activity serves to establish channel mRNA relationships necessary to produce the ionic current profile necessary for the next bout of activity.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0320-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Relationships among membrane currents allow central pattern generator (CPG) neurons to reliably drive motor programs. We hypothesize that continually active CPG neurons utilize activity-dependent feedback to correlate expression of ion channel genes to balance essential membrane currents. However, episodically activated neurons experience absences of activity-dependent feedback and, thus, presumably employ other strategies to coregulate the balance of ionic currents necessary to generate appropriate output after periods of quiescence. To investigate this, we compared continually active pyloric dilator (PD) neurons with episodically active lateral gastric (LG) CPG neurons of the stomatogastric ganglion (STG) in male Cancer borealis crabs. After experimentally activating LG for 8 h, we measured three potassium currents and abundances of their corresponding channel mRNAs. We found that ionic current relationships were correlated in LG's silent state, but ion channel mRNA relationships were correlated in the active state. In continuously active PD neurons, ion channel mRNAs and ionic currents are simultaneously correlated. Therefore, two distinct relationships exist between channel mRNA abundance and the ionic current encoded in these cells: in PD, a direct correlation exists between Shal channel mRNA levels and the A-type potassium current it carries. Conversely, such channel mRNA-current relationships are not detected and appear to be temporally uncoupled in LG neurons. Our results suggest that ongoing feedback maintains membrane current and channel mRNA relationships in continually active PD neurons, while in LG neurons, episodic activity serves to establish channel mRNA relationships necessary to produce the ionic current profile necessary for the next bout of activity.

持续活跃与间歇活跃神经元中相关离子通道 mRNA 和离子电流的调控策略不同
膜电流之间的关系使中枢模式发生器(CPG)神经元能够可靠地驱动运动程序。我们假设,持续活跃的中枢模式发生器神经元利用活动依赖性反馈来关联离子通道基因的表达,从而平衡必要的膜电流。然而,偶发性激活的神经元缺乏活动依赖性反馈,因此可能会采用其他策略来核心调节离子电流的平衡,从而在静止期后产生适当的输出。为了研究这一点,我们比较了雄性巨蟹口胃神经节(STG)中持续活跃的幽门扩张器(PD)神经元与偶发性活跃的外侧胃(LG)CPG神经元。在实验性激活 LG 8 小时后,我们测量了 3 种钾电流及其相应 mRNA 的丰度。我们发现,在 LG 的静默状态下,离子电流关系是相关的,但在激活状态下,离子通道 mRNA 关系是相关的。在持续活跃的 PD 神经元中,离子通道 mRNA 和离子电流同时相关。因此,在这些细胞中,通道 mRNA 丰度与编码的离子电流之间存在两种不同的关系:在帕金森病中,沙尔通道 mRNA 水平与其携带的 A 型钾电流直接相关。相反,在 LG 神经元中却检测不到这种通道 mRNA 与电流之间的关系,而且这种关系似乎在时间上是不耦合的。我们的研究结果表明,在持续活动的 PD 神经元中,持续的反馈维持着膜电流和通道 mRNA 的关系,而在 LG 神经元中,偶发性活动是为了建立必要的通道 mRNA 关系,以产生下一轮活动所需的离子电流曲线。在持续活动的神经元中,实现这一目标的一种可能策略是利用活动依赖性反馈来持续保持离子通道 mRNA 的相关水平,这些水平是相应离子电流之间相关性的基础。然而,具有瞬时活动期的神经元必须使用其他策略。我们的研究表明,在偶发性活动的神经元中,离子通道 mRNA 和相应的离子电流在不同的活动状态下是相关的。我们认为,在这些细胞中,相关 mRNA 与电流之间的时间解耦使得表观活跃的神经元即使在非活动期也能稳定适当的核心化离子电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信