Mohini Semwal, Nikita Vashistha, Sven Rau, Benjamin Dietzek-Ivanšić
{"title":"An Increase in the Rigidity of the Environment Favors MLCT over the MC State in [Ru(bpy)<sub>2</sub>(Nicotine)<sub>2</sub>](Cl)<sub>2</sub>: A Case Study of Photolabile Ligands.","authors":"Mohini Semwal, Nikita Vashistha, Sven Rau, Benjamin Dietzek-Ivanšić","doi":"10.1021/acs.jpca.4c04914","DOIUrl":null,"url":null,"abstract":"<p><p>Ru(II)-complexes with photolabile ligands find a wide range of applications, e.g., in drug release and in the design of light-responsive interfaces. While light-driven ligand loss has been studied mechanistically in detail for complexes in solution, comparably few studies are present that investigate the process in a material context, i.e., in a rigid environment and in the absence of solvent. This paper adds to this underrepresented perspective by studying the excited-state dynamics of [Ru(bpy)<sub>2</sub>(nicotine)<sub>2</sub>] (Cl)<sub>2</sub> (<b>Ru-nico</b>) as a model system in poly(methyl methacrylate) (PMMA) and polyacrylonitrile (PAN) matrices. Femtosecond transient absorption spectroscopy and time-resolved emission spectroscopy are employed to monitor the photodissociation of labile nicotine ligands in polymer environments. Photoexcitation within the metal-to-ligand charge transfer (MLCT) band leads to transient dissociation of the nicotine ligand when the complex is dissolved in water. However, optical excitation of the <sup>1</sup>MLCT transition of the complexes embedded in polymer matrices does not result in photodissociation, likely due to the rigidity of the environment, which cannot solvate the undercoordinated complex after ligand dissociation and the dissociated ligand. These insights shed light on the role of the local environment when considering the photophysics of ligand loss from Ru(II)-polypyridyl complexes and, hence, their use in the light-activation of reactive molecular components in materials.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Ru(II)-complexes with photolabile ligands find a wide range of applications, e.g., in drug release and in the design of light-responsive interfaces. While light-driven ligand loss has been studied mechanistically in detail for complexes in solution, comparably few studies are present that investigate the process in a material context, i.e., in a rigid environment and in the absence of solvent. This paper adds to this underrepresented perspective by studying the excited-state dynamics of [Ru(bpy)2(nicotine)2] (Cl)2 (Ru-nico) as a model system in poly(methyl methacrylate) (PMMA) and polyacrylonitrile (PAN) matrices. Femtosecond transient absorption spectroscopy and time-resolved emission spectroscopy are employed to monitor the photodissociation of labile nicotine ligands in polymer environments. Photoexcitation within the metal-to-ligand charge transfer (MLCT) band leads to transient dissociation of the nicotine ligand when the complex is dissolved in water. However, optical excitation of the 1MLCT transition of the complexes embedded in polymer matrices does not result in photodissociation, likely due to the rigidity of the environment, which cannot solvate the undercoordinated complex after ligand dissociation and the dissociated ligand. These insights shed light on the role of the local environment when considering the photophysics of ligand loss from Ru(II)-polypyridyl complexes and, hence, their use in the light-activation of reactive molecular components in materials.