Tukang Peng, Zhijun Li, Jiebing Gao, Min Yang, Yifan Qiu, Jianzhong Xian, Lei Bi, Peizhen Ye, Yongshan Liu, Hongjun Jin
{"title":"In Vivo Detection of Lymph Nodes Metastasis of ESCC Using CXCR4-Targeted Tracer [<sup>64</sup>Cu]Cu-NOTA-CP01.","authors":"Tukang Peng, Zhijun Li, Jiebing Gao, Min Yang, Yifan Qiu, Jianzhong Xian, Lei Bi, Peizhen Ye, Yongshan Liu, Hongjun Jin","doi":"10.1007/s11307-024-01960-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Esophageal squamous cell carcinoma (ESCC) frequently exhibits skip metastasis to lymph nodes; however, non-invasive imaging techniques capable of directly visualizing metastatic lymph nodes (MLN) are still lacking. Although biopsy is the clinical standard method, it is invasive and poses risks to patient health. This study aims to detect MLN in an intralymphatic tumor metastasis model of ESCC using the CXCR4-targeted tracer [<sup>64</sup>Cu]Cu-NOTA-CP01.</p><p><strong>Procedures: </strong>The CXCR4 expression in ESCC cell lines was assessed using Western blot and immunofluorescence. An intralymphatic tumor metastasis model was established and monitored using bioluminescence imaging (BLI). Small animal PET studies and biodistribution studies were performed to evaluate the specificity of [<sup>64</sup>Cu]Cu-NOTA-CP01 for MLN. Histopathology evaluation was employed to check for the presence of metastatic tumor cells and to assess CXCR4 expression levels in the metastatic lymph nodes.</p><p><strong>Results: </strong>The intralymphatic tumor metastasis model was successfully established using the EC109/Luc cell line, which exhibited high CXCR4 expression, as verified by BLI. PET/CT imaging showed that the MLN uptakes in the baseline group were significantly inhibited in the blocking group. The ratios of MLN/muscle and MLN/blood were also significantly higher in the baseline group than in the blocking group. Ex vivo PET/CT imaging of MLN corroborated the in vivo data. Biodistribution studies further supported the PET imaging studies, showing rapid clearance of the tracer from the blood and major organs, with significantly higher MLN/muscle and MLN/blood ratios in the baseline group compared to the blocking group. Histopathological staining verified positive CXCR4 expression in these lymph nodes containing metastatic tumor cells.</p><p><strong>Conclusions: </strong>Targeting CXCR4 with [<sup>64</sup>Cu]Cu-NOTA-CP01 for PET imaging of lymph nodes metastasis represents a promising approach that warrants further investigation. These findings have the potential to enhance diagnostic and therapeutic strategies for individuals with lymph nodes metastasis of ESCC.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-024-01960-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Esophageal squamous cell carcinoma (ESCC) frequently exhibits skip metastasis to lymph nodes; however, non-invasive imaging techniques capable of directly visualizing metastatic lymph nodes (MLN) are still lacking. Although biopsy is the clinical standard method, it is invasive and poses risks to patient health. This study aims to detect MLN in an intralymphatic tumor metastasis model of ESCC using the CXCR4-targeted tracer [64Cu]Cu-NOTA-CP01.
Procedures: The CXCR4 expression in ESCC cell lines was assessed using Western blot and immunofluorescence. An intralymphatic tumor metastasis model was established and monitored using bioluminescence imaging (BLI). Small animal PET studies and biodistribution studies were performed to evaluate the specificity of [64Cu]Cu-NOTA-CP01 for MLN. Histopathology evaluation was employed to check for the presence of metastatic tumor cells and to assess CXCR4 expression levels in the metastatic lymph nodes.
Results: The intralymphatic tumor metastasis model was successfully established using the EC109/Luc cell line, which exhibited high CXCR4 expression, as verified by BLI. PET/CT imaging showed that the MLN uptakes in the baseline group were significantly inhibited in the blocking group. The ratios of MLN/muscle and MLN/blood were also significantly higher in the baseline group than in the blocking group. Ex vivo PET/CT imaging of MLN corroborated the in vivo data. Biodistribution studies further supported the PET imaging studies, showing rapid clearance of the tracer from the blood and major organs, with significantly higher MLN/muscle and MLN/blood ratios in the baseline group compared to the blocking group. Histopathological staining verified positive CXCR4 expression in these lymph nodes containing metastatic tumor cells.
Conclusions: Targeting CXCR4 with [64Cu]Cu-NOTA-CP01 for PET imaging of lymph nodes metastasis represents a promising approach that warrants further investigation. These findings have the potential to enhance diagnostic and therapeutic strategies for individuals with lymph nodes metastasis of ESCC.
期刊介绍:
Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures.
Some areas that are covered are:
Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes.
The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets.
Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display.
Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging.
Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics.
Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations.
Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.