TL-CStrans Net: a vision robot for table tennis player action recognition driven via CS-Transformer.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1443177
Libo Ma, Yan Tong
{"title":"TL-CStrans Net: a vision robot for table tennis player action recognition driven via CS-Transformer.","authors":"Libo Ma, Yan Tong","doi":"10.3389/fnbot.2024.1443177","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, the application of robotics technology in sports training and competitions is rapidly increasing. Traditional methods mainly rely on image or video data, neglecting the effective utilization of textual information. To address this issue, we propose: TL-CStrans Net: A vision robot for table tennis player action recognition driven via CS-Transformer. This is a multimodal approach that combines CS-Transformer, CLIP, and transfer learning techniques to effectively integrate visual and textual information. Firstly, we employ the CS-Transformer model as the neural computing backbone. By utilizing the CS-Transformer, we can effectively process visual information extracted from table tennis game scenes, enabling accurate stroke recognition. Then, we introduce the CLIP model, which combines computer vision and natural language processing. CLIP allows us to jointly learn representations of images and text, thereby aligning the visual and textual modalities. Finally, to reduce training and computational requirements, we leverage pre-trained CS-Transformer and CLIP models through transfer learning, which have already acquired knowledge from relevant domains, and apply them to table tennis stroke recognition tasks. Experimental results demonstrate the outstanding performance of TL-CStrans Net in table tennis stroke recognition. Our research is of significant importance in promoting the application of multimodal robotics technology in the field of sports and bridging the gap between neural computing, computer vision, and neuroscience.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1443177","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the application of robotics technology in sports training and competitions is rapidly increasing. Traditional methods mainly rely on image or video data, neglecting the effective utilization of textual information. To address this issue, we propose: TL-CStrans Net: A vision robot for table tennis player action recognition driven via CS-Transformer. This is a multimodal approach that combines CS-Transformer, CLIP, and transfer learning techniques to effectively integrate visual and textual information. Firstly, we employ the CS-Transformer model as the neural computing backbone. By utilizing the CS-Transformer, we can effectively process visual information extracted from table tennis game scenes, enabling accurate stroke recognition. Then, we introduce the CLIP model, which combines computer vision and natural language processing. CLIP allows us to jointly learn representations of images and text, thereby aligning the visual and textual modalities. Finally, to reduce training and computational requirements, we leverage pre-trained CS-Transformer and CLIP models through transfer learning, which have already acquired knowledge from relevant domains, and apply them to table tennis stroke recognition tasks. Experimental results demonstrate the outstanding performance of TL-CStrans Net in table tennis stroke recognition. Our research is of significant importance in promoting the application of multimodal robotics technology in the field of sports and bridging the gap between neural computing, computer vision, and neuroscience.

TL-CStrans Net:通过 CS 变压器驱动的乒乓球运动员动作识别视觉机器人。
目前,机器人技术在体育训练和比赛中的应用正在迅速增加。传统方法主要依赖图像或视频数据,忽视了文本信息的有效利用。针对这一问题,我们提出了:TL-CStrans Net:通过 CS 变换器驱动的乒乓球运动员动作识别视觉机器人。这是一种多模态方法,结合了 CS-Transformer、CLIP 和迁移学习技术,有效地整合了视觉和文本信息。首先,我们采用 CS-Transformer 模型作为神经计算骨干。通过利用 CS-Transformer,我们可以有效处理从乒乓球比赛场景中提取的视觉信息,从而实现准确的击球识别。然后,我们介绍了结合计算机视觉和自然语言处理的 CLIP 模型。CLIP 允许我们联合学习图像和文本的表征,从而使视觉和文本模式保持一致。最后,为了降低训练和计算要求,我们通过迁移学习利用预先训练好的 CS-Transformer 和 CLIP 模型,这些模型已经从相关领域获取了知识,并将它们应用于乒乓球击球识别任务。实验结果表明,TL-CStrans Net 在乒乓球击球识别中表现出色。我们的研究对于促进多模态机器人技术在体育领域的应用,以及弥合神经计算、计算机视觉和神经科学之间的鸿沟具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信