{"title":"Active Photonic Glass for Hydrogen Generation.","authors":"Cong Wang, Masa Johar, Wahid Ullah, Erwan Paineau, Jingwei Li, Mohamed Nawfal Ghazzal","doi":"10.1002/chem.202402141","DOIUrl":null,"url":null,"abstract":"<p><p>Chirality is vital in many living species since it is responsible for structural iridescent coloration and plays a key role in light harvesting during natural photosynthesis. Developing photoactive materials with such chiral structures is a challenging but promising strategy for energy applications. Here, we present a straightforward method to establish an active photonic glass obtained through the co-condensation of tetramethyl orthosilicate (TMOS) and titanium diisopropoxide bis(acetylacetonate) (TAA) dissolved in a liquid crystal formed from cellulose nanocrystalline (CNC). The inorganic glass maintains a long range of chiral nematic ordering, displaying iridescent colors characterized by a Bragg peak reflection. The reflected wavelengths are tuned all over the UV-visible range, demonstrating that the replica of the chiral nematic structure generates photonic properties. Incorporation of gold nanoparticles (Au NPs) into the films is further performed by impregnation/chemical reduction. We show that the charge carrier density and photocatalytic H<sub>2</sub> generation were amplified when the photonic band gap edges matched the absorbance of the TiO<sub>2</sub> and localized surface plasmon resonance (LSPR) of AuNPs. This photocatalytic glass with chiral nematic ordering and a tunable photonic bandgap paves the way for the development of metamaterials with new applications, such as asymmetric photocatalysis.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202402141"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202402141","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chirality is vital in many living species since it is responsible for structural iridescent coloration and plays a key role in light harvesting during natural photosynthesis. Developing photoactive materials with such chiral structures is a challenging but promising strategy for energy applications. Here, we present a straightforward method to establish an active photonic glass obtained through the co-condensation of tetramethyl orthosilicate (TMOS) and titanium diisopropoxide bis(acetylacetonate) (TAA) dissolved in a liquid crystal formed from cellulose nanocrystalline (CNC). The inorganic glass maintains a long range of chiral nematic ordering, displaying iridescent colors characterized by a Bragg peak reflection. The reflected wavelengths are tuned all over the UV-visible range, demonstrating that the replica of the chiral nematic structure generates photonic properties. Incorporation of gold nanoparticles (Au NPs) into the films is further performed by impregnation/chemical reduction. We show that the charge carrier density and photocatalytic H2 generation were amplified when the photonic band gap edges matched the absorbance of the TiO2 and localized surface plasmon resonance (LSPR) of AuNPs. This photocatalytic glass with chiral nematic ordering and a tunable photonic bandgap paves the way for the development of metamaterials with new applications, such as asymmetric photocatalysis.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.