Juan Ning, Guojie Li, Yijun Zhao, Jiahui Shi, Yamin Nie, Yonghong Li, Yanmei Zhou
{"title":"Carbon dot-based nanomaterials with enzyme-like activity for fluorescence imaging and potential combination with therapy of cancer","authors":"Juan Ning, Guojie Li, Yijun Zhao, Jiahui Shi, Yamin Nie, Yonghong Li, Yanmei Zhou","doi":"10.1007/s00604-024-06813-3","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dot-based nanomaterials (o-CDs@Mn) were fabricated by assembling fluorescent o-CDs with enzyme-like activity and Mn nanoparticles with photothermal properties for realizing fluorescence imaging and combined therapy of cancer. Due to the inherent optical properties of o-CDs, o-CDs@Mn can be effectively used for bioimaging. In addition, o-CDs@Mn possess peroxidase-like (POD-like) and glutathione (GSH) degradation capabilities, which can effectively deplete excessive H<sub>2</sub>O<sub>2</sub> and GSH in the tumor microenvironment (TME), generating ·OH and reduced GSSH for regulating the TME and triggering ROS-mediated apoptosis in cancer cells. More importantly, it is synergistically supplemented with fluorescence imaging and photothermal therapy (PTT), which realizes the integration of monitoring and combined treatment, providing a promising potential pathway for accurate and efficient cancer treatment.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06813-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dot-based nanomaterials (o-CDs@Mn) were fabricated by assembling fluorescent o-CDs with enzyme-like activity and Mn nanoparticles with photothermal properties for realizing fluorescence imaging and combined therapy of cancer. Due to the inherent optical properties of o-CDs, o-CDs@Mn can be effectively used for bioimaging. In addition, o-CDs@Mn possess peroxidase-like (POD-like) and glutathione (GSH) degradation capabilities, which can effectively deplete excessive H2O2 and GSH in the tumor microenvironment (TME), generating ·OH and reduced GSSH for regulating the TME and triggering ROS-mediated apoptosis in cancer cells. More importantly, it is synergistically supplemented with fluorescence imaging and photothermal therapy (PTT), which realizes the integration of monitoring and combined treatment, providing a promising potential pathway for accurate and efficient cancer treatment.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.