Yi-Wen Zhang, Jun-Jie Yang, Feng-Hui Qian, Kate Brandon Sutton, Carsten Hjort, Wen-Ping Wu, Yu Jiang, Sheng Yang
{"title":"Engineering a xylose fermenting yeast for lignocellulosic ethanol production","authors":"Yi-Wen Zhang, Jun-Jie Yang, Feng-Hui Qian, Kate Brandon Sutton, Carsten Hjort, Wen-Ping Wu, Yu Jiang, Sheng Yang","doi":"10.1038/s41589-024-01771-6","DOIUrl":null,"url":null,"abstract":"<p>Lignocellulosic ethanol is produced by yeast fermentation of lignocellulosic hydrolysates generated by chemical pretreatment and enzymatic hydrolysis of plant cell walls. The conversion of xylose into ethanol in hydrolysates containing microbial inhibitors is a major bottleneck in biofuel production. We identified sodium salts as the primary yeast inhibitors, and evolved a <i>Saccharomyces cerevisiae</i> strain overexpressing xylose catabolism genes in xylose or glucose-mixed medium containing sodium salts. The fully evolved yeast strain can efficiently convert xylose in the hydrolysates to ethanol on an industrial scale. We elucidated that the amplification of <i>xylA</i>, <i>XKS1</i> and pentose phosphate pathway-related genes <i>TAL1</i>, <i>RPE1</i>, <i>TKL1</i>, <i>RKI1</i>, along with mutations in <i>NFS1</i>, <i>TRK1</i>, <i>SSK1</i>, <i>PUF2</i> and <i>IRA1</i>, are responsible and sufficient for the effective xylose utilization in corn stover hydrolysates containing high sodium salts. Our evolved or reverse-engineered yeast strains enable industrial-scale production of lignocellulosic ethanol and the genetic foundation we uncovered can also facilitate transfer of the phenotype to yeast cell factories producing chemicals beyond ethanol.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":null,"pages":null},"PeriodicalIF":12.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01771-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulosic ethanol is produced by yeast fermentation of lignocellulosic hydrolysates generated by chemical pretreatment and enzymatic hydrolysis of plant cell walls. The conversion of xylose into ethanol in hydrolysates containing microbial inhibitors is a major bottleneck in biofuel production. We identified sodium salts as the primary yeast inhibitors, and evolved a Saccharomyces cerevisiae strain overexpressing xylose catabolism genes in xylose or glucose-mixed medium containing sodium salts. The fully evolved yeast strain can efficiently convert xylose in the hydrolysates to ethanol on an industrial scale. We elucidated that the amplification of xylA, XKS1 and pentose phosphate pathway-related genes TAL1, RPE1, TKL1, RKI1, along with mutations in NFS1, TRK1, SSK1, PUF2 and IRA1, are responsible and sufficient for the effective xylose utilization in corn stover hydrolysates containing high sodium salts. Our evolved or reverse-engineered yeast strains enable industrial-scale production of lignocellulosic ethanol and the genetic foundation we uncovered can also facilitate transfer of the phenotype to yeast cell factories producing chemicals beyond ethanol.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.