Sijie Liu, Le Zhou, Tingjun Zhong, Xin Wu, Kristiaan Neyts
{"title":"Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries","authors":"Sijie Liu, Le Zhou, Tingjun Zhong, Xin Wu, Kristiaan Neyts","doi":"10.1002/aenm.202403602","DOIUrl":null,"url":null,"abstract":"This review introduces solid electrolytes based on sulfide/polymer composites which are used in all-solid-state lithium batteries, describing the use of polymers as plasticizer, the lithium-ion conductive channel, the preparation methods of solid-state electrolytes (SSEs), including dry methods and wet methods with their advantages and disadvantages. In addition, the physicochemical stability of sulfide/polymer composite based solid-state electrolytes is analyzed. The sulfide/polymer composite based solid-state electrolyte can be utilized in lithium metal or lithium sulfur batteries. However, there are still many problems left to be solved in practical applications of these solid-state electrolytes. In this review, several solutions are explored. Firstly, the ultra-long life cycle of batteries can be achieved by thinning the composite electrolyte. Secondly, when sulfur is applied as the positive electrode, the thinning electrolyte can reduce polarization and other problems. Finally, an integrated battery is employed to reduce the interface impedance. By addressing these aspects, the review aims to provide valuable insights into the future development of high-performance solid-state electrolytes in lithium battery technology.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"27 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403602","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review introduces solid electrolytes based on sulfide/polymer composites which are used in all-solid-state lithium batteries, describing the use of polymers as plasticizer, the lithium-ion conductive channel, the preparation methods of solid-state electrolytes (SSEs), including dry methods and wet methods with their advantages and disadvantages. In addition, the physicochemical stability of sulfide/polymer composite based solid-state electrolytes is analyzed. The sulfide/polymer composite based solid-state electrolyte can be utilized in lithium metal or lithium sulfur batteries. However, there are still many problems left to be solved in practical applications of these solid-state electrolytes. In this review, several solutions are explored. Firstly, the ultra-long life cycle of batteries can be achieved by thinning the composite electrolyte. Secondly, when sulfur is applied as the positive electrode, the thinning electrolyte can reduce polarization and other problems. Finally, an integrated battery is employed to reduce the interface impedance. By addressing these aspects, the review aims to provide valuable insights into the future development of high-performance solid-state electrolytes in lithium battery technology.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.