{"title":"The role of policy and module manufacturing learning in industrial decarbonization by small modular reactors","authors":"Max Vanatta, William R. Stewart, Michael T. Craig","doi":"10.1038/s41560-024-01665-w","DOIUrl":null,"url":null,"abstract":"<p>Small modular reactors (SMRs) offer a unique solution to the challenge of decarbonizing mid- and high-temperature industrial processes. Here we develop deployment pathways for four SMR designs displacing natural gas in industrial heat processes at 925 facilities across the United States under diverse policy and factory or onsite learning conditions. We find that widespread SMR deployment in industry requires gas prices above US$6 per metric million British thermal unit, low capital cost over-runs and/or aggressive carbon taxes. At gas prices of US$6–10 per metric million British thermal unit, 7–55 gigawatt-thermal (GW<sub>t</sub>) of SMRs could be economically deployed by 2050, reducing annual emissions by up to 59 Mt of CO<sub>2</sub>-equivalent. Of this deployment, 2–24 GW<sub>t</sub> rely on module manufacturing learning within a factory. Widespread deployment potential hinges on avoiding substantial cost escalation for early investments. Policy levers such as direct subsidies are not effective at incentivizing sustainable deployment, but aggressive carbon taxes and investment tax credits provide effective support for SMR success.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"23 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01665-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Small modular reactors (SMRs) offer a unique solution to the challenge of decarbonizing mid- and high-temperature industrial processes. Here we develop deployment pathways for four SMR designs displacing natural gas in industrial heat processes at 925 facilities across the United States under diverse policy and factory or onsite learning conditions. We find that widespread SMR deployment in industry requires gas prices above US$6 per metric million British thermal unit, low capital cost over-runs and/or aggressive carbon taxes. At gas prices of US$6–10 per metric million British thermal unit, 7–55 gigawatt-thermal (GWt) of SMRs could be economically deployed by 2050, reducing annual emissions by up to 59 Mt of CO2-equivalent. Of this deployment, 2–24 GWt rely on module manufacturing learning within a factory. Widespread deployment potential hinges on avoiding substantial cost escalation for early investments. Policy levers such as direct subsidies are not effective at incentivizing sustainable deployment, but aggressive carbon taxes and investment tax credits provide effective support for SMR success.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.