Saskia Lesire, Rodrigo Lata, Yannick Hoogvliets, Kune Herrebosch, Paulien Van De Velde, Anouk Speleers, Frauke Christ, Siska Van Belle, Zeger Debyser
{"title":"LEDGF interacts with the NID domain of MeCP2 and modulates MeCP2 condensates","authors":"Saskia Lesire, Rodrigo Lata, Yannick Hoogvliets, Kune Herrebosch, Paulien Van De Velde, Anouk Speleers, Frauke Christ, Siska Van Belle, Zeger Debyser","doi":"10.1016/j.str.2024.10.016","DOIUrl":null,"url":null,"abstract":"Methyl-CpG-binding protein 2 (MeCP2) is a ubiquitously expressed nuclear protein involved in transcriptional regulation and chromatin remodeling. MeCP2 exists in two isoforms, MeCP2 E1 and E2, which share the same functional domains. Loss-of-function mutations in the MeCP2 gene are the main cause of Rett syndrome (RTT). Previous studies identified a complex formation between MeCP2 and lens epithelium derived growth factor (LEDGF), a transcriptional regulator that exists in two isoforms, LEDGF/p75 and LEDGF/p52. Here, we characterized the molecular and functional interaction between MeCP2 and LEDGF. The NCoR interaction domain (NID) domain in MeCP2 is essential for the direct binding to the PWWP-CR1 region of LEDGF. Introduction of R306C, an RTT mutation in the NID of MeCP2, reduced the interaction with LEDGF. Our data reveal mutual inhibition of MeCP2 and LEDGF multimerization due to overlapping binding sites. Aligning with this observation, LEDGF depletion resulted in larger MeCP2 and DNA foci in NIH3T3 cells, suggesting a role for the MeCP2-LEDGF complex in chromatin organization.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"87 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a ubiquitously expressed nuclear protein involved in transcriptional regulation and chromatin remodeling. MeCP2 exists in two isoforms, MeCP2 E1 and E2, which share the same functional domains. Loss-of-function mutations in the MeCP2 gene are the main cause of Rett syndrome (RTT). Previous studies identified a complex formation between MeCP2 and lens epithelium derived growth factor (LEDGF), a transcriptional regulator that exists in two isoforms, LEDGF/p75 and LEDGF/p52. Here, we characterized the molecular and functional interaction between MeCP2 and LEDGF. The NCoR interaction domain (NID) domain in MeCP2 is essential for the direct binding to the PWWP-CR1 region of LEDGF. Introduction of R306C, an RTT mutation in the NID of MeCP2, reduced the interaction with LEDGF. Our data reveal mutual inhibition of MeCP2 and LEDGF multimerization due to overlapping binding sites. Aligning with this observation, LEDGF depletion resulted in larger MeCP2 and DNA foci in NIH3T3 cells, suggesting a role for the MeCP2-LEDGF complex in chromatin organization.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.